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The ansatz ® = ®(&,E) for a solution of the stationary Einstein-Maxwell equations is analyzed. The
possible forms of this function are listed and it is shown that one obtains from every solution of the
vacuum Ernst equations an at most two-parameter solution of the Einstein-Maxwell equations.

1. INTRODUCTION

It is well known that the problem of stationary Ein-
stein—Maxwell fields can be formulated in a three-
dimensional manifold with two complex functions & and
$, the Ernst potential and the electromagnetic poten-
tial, in it,!™* It has furthermore been shown that the in-
ternal symmetry group of the equations emerging from
that formalism is isomorphic to SU(2,1). 24 Still it is a
formidable task to solve those equations, and one is
thus tempted to restrict oneself to solutions not incor-
porating some of the fields, for instance the pure
vacuum fields or the electrostatic fields. Also the
ansatz ® = linear function of ¢ has been made and used
to obtain the charged version of the Kerr and

Tomimatsu—Sato solutions from the uncharged ones. !*®

While this ansatz is fairly obvious, we shall derive in
Sec. 3 by the method outlined in Sec. 2 the most gen-
eral form in which an ansatz & = &(£, &) may be made.

Throughout the paper V will denote the covariant
derivative operator and we shall suppress coordinate
indices.

2. THE METHOD

Suppose we are given a system of N interacting mass-
less fields, denoted by f°, and the field equations are to
be derived from the Lagrangian

L =G, (f™vrevs?, (2.1)

(cf. Refs. 4,6), where G, is nonsingular. The field
equations are

VIO + IAVOVFC =0, (2.2)

where the I'’s are the usual Christoffel symbols formed
with respect to the G’s.

As an ansatz for a solution of (2.2) we take here at
most N — 1 functions of the f¢ and assume them to
vanish identically, i.e.,

FA(fm)=0. (2.3)
This implies

VFA=F*4,Vf*=0,

VIFA—F4, , VfoUfP=0,
Combining those, we obtain

P4, b, IV "= 0, (2.4)

where %j is the projection tensor onto the submanifold
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of the space whose metric is given by G, defined by
(2.3).

One may now use (2. 3) to replace some of the field
equations (2.2) by (2.4). If we chose the F* to satisfy

F4, , h% k. =0, (2.5)
then (2. 4) is satisfied identically and we have reduced

the number of variables in (2.1) and (2. 2). Equation
(2.5) is, of course, satisfied if

FA;anOJ

but this implies the existence of a covariantly constant
vector and is thus only possible if G, is decomposible.

To summarize: If we want to simplify the Lagrangian
(2.1) and (2. 2) by reducing the number of independent
variables, we have to solve (2.5).

3. STATIONARY EINSTEIN-MAXWELL FIELDS

We now apply the method of the preceeding section to
stationary Einstein—Maxwell fields. For the definitions
let us recall the following: Let M be a four-dimensional
manifold with metric g (signature — + + +) satisfying the
Einstein—Maxwell equations with electromagnetic field
tensor F and admitting a Killing vector ¢, Define X, w,
€, B, ¢ so that

==§(5>0, w=€{{VE)=Vd+eVE-pV
Ve=(1/V2)Ft, VB=(1/V2) e({F) (€= Levi-Civita tensor).

The Einstein—Maxwell equations can be formulated in
the manifold S of trajectories of £ in M, endowed with
the metric

h=xg+¢-¢,

(For details of the derivation cf., e.g., Ref, 2.) The
Lagrangian is

L =2R™ + L,
L=(1/3)[V2? + (V¢ +eVB~ BVe)? = 2X (Ve + VA2,
(3.1)

Considering first only one function of ¢, X, ¢, 8 to
vanish, i.e.,

¢ =o€, B), (3.2)
one finds after fairly long calculations that this ansatz
does not provide a solution of (2, 5).

Rewriting (3. 1) in terms of the variables

E=n=-10d +ip,

P =€+1if3,
one has

(3.3)
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L=(1/A)(VEVE +BVEVD +BYEVSD ~ (€ +E)IVEVD),
(3.4)
and assuming
¢=0(,5),

one finds for (2.5) the equations (a dot and a prime
denote differentiation with respect to £ and E, re-
spectively; thus under complex conjugation £ goes into
&, @ into &, dot into prime, and vice versa)

(3.5)

‘i;=0,
3" =(1/M)3' (33’ ~ 33’ ~ 1),
28" = (1/A)8'(1 + 36 ~ &3),

(3.6)

and their complex conjugates. The integrability condi-
tions are

26/% + 30’ =0 (3.7)
or
21nd’ + lné =h(&),
from which by use of (3.6) follows
(@"/®') =0.
With
& =f(E)E +g(E),
one finds
&) =ag) +8,
and then from (3. 7)
b=af +B+( +9/(E +o)

By inserting this expression into (3. 6) one obtains
conditions on the constants a, B, ¥, 6

(3.8)

1+8a-ay—aad=0, 3.9)

BB—vy— 06— aBd—ayb=0.
Before entering into further calculations we observe
that we still have the freedom of performing Kinnersley
transformations. In particular, the following can be
used to simplify (3. 8):

»—-e'd, £—-E,
d—-ad, E—df,
d— P, 5*E+ia.

We can transform such that 6=d=1, -1, 0, a=a
= real. In the case d =0 a can, moreover, be trans-
formed to 1. Thus one finds from (3.9) that

&=al +B+(£ +ad)/(E +d),
_ﬁ:'y+ad:%(l/a +1ib),
d::l, —1, 0, d:O—’a=1.

(3.10a)

For completeness one has to consider the cases for
&"=®*' =0, They are in already simplified form:

@:(l((f +d),
e=F-E-3.

The question if the relations (3. 10) are covariant un-

(3.10b)
(3.10c)
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der Kinnersley’s SU(2, 1) group can be answered by sim-
ply arguing that the infinitesimal Kinnersley transforma-
tions are just the Killing vectors of the metric defined
by (3.4) and thus (3.10), being the solution of (2.5), has
to be covariant under that group. Another way of ob-
taining this result is using the variables in Kinnersley’s
space v° (£ =y1/y%, ®=y%/2y?), where (3.10) can be
written in the form

EGAabyb =0 (1Aab1 = 0)>

which is manifestly covariant under Lorentz rotations
in that space. This form of Eqgs. (3.10a), (3.10c) also
serves to answer the question whether they are con-
nected by some Kinnersley transformations. The
matrices A are

-a B 3
- -da -%
0 0 0
and
0 1 0
-1 3 3|
0 0 ©

respectively. Define the interior product of two vectors
in Kinnersley’s space by 4

(a,b):=ng,a’, n=

One finds then that one of the eigenvectors of the
second matrix is a null vector, while none of the eigen-
vectors of the first matrix has this property. Thus the
two matrices cannot be transformed into each other by
Kinnersley’s SU{2, 1) transformations,

Equation (3.10b) has been used by Ernst to “charge”
the Kerr and Tomimatsu—Sato solutions. Equation
(3.10c) describes magnetostatic solutions as one can
easily calculate that e=— 4 and 3=2¢, and consequent-
ly the twist of the Killing vector vanishes.

Finally the Lagrangia.n (3. 4) becomes
NL=[8= (€ +E)B]BVE +[B - (£ +E)B1@'VE?
+[1+88 + b~ (£ +5)(D' +38")|VEVE,
(3.11)
and one can calculate, using (3.6) via
Ryy==KG,,

the Gaussian curvature of the hypersurfaces defined by
(3.10). One finds in the case of (3.10b) K =-1 while

K =— % in the other cases. In the course of the calcula-
tion one encounters for &'+ 0 the relation

(€ +&) (@87 - /D) + Db + 8D’ +1=0,
which is identically satisfied for & given by (3.10a),

(3.10c) and may be used to write the last term in Eq.
(3.11) in the form
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- 2(E +E)2d".
It also may be used to verify that in this case
|G| = (/2930

For & given by (3.10a) Eq. (3.11) may be cast into the
form

L=[-16/(1 +mn)?] VimVn, (3.12a)

while the transformations accomplishing that are given
by

1 d 1 a('yir;/))“2 m-n
Rez=23-3 —2<1+ 2975d mtn’

Im 1 ab m-n
E +d " 2A2vdaly +7) + 2y¥d)[T7° m +n

+ 1 mn -1
aly+¥)+2»d]'?  m+n

(3.13a’)
for d#0 and
1 1 [/m
Reg:=§ﬁ(n - 1),

1 1 1 1
Ime=75 [5(“) - ”]’

for d=0 and a=1. The remaining cases are fairly
trivial; we list them for completeness:

(3.13a")

Case (3.10b):

4

L =g Vs (3.12b)

__*/7(04—1)5-1-\/—5(0— 1)

= DT c=(1+2a2d)!? (@+0)

k

(3.13p%)
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E=%+1/&, d=0, a=1. (3.13b")
Case (3.10c):
L:—-——-zl6 VmVn (3.12c)
m +n) ’
m 1
:ﬁi—— . 3.13C)
” } =9 (

The Lagrangians (3.12) are very similar to or the same
as the Ernst Lagrangian. Thus for every solution of
the Ernst equations one obtains by the transformations
(3.13) and the relations (3.10) a one- or two-parameter
solution of the Einstein—Maxwell equations. It is, how-
ever, straightforward to check that the easiest solution
of the field equations belonging to {3.12a} in prolate
spheroidal coordinates (cf. Ref. 7) m=x, n=-x gives,
by (3.13a"), rise to a solution which is not asymptoti-
cally Schwarzschild like, as A=4yy + constx™. The
physical meaning of the parameters a, b, is thus far
from obvious.
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A number of one-loop graphs with arbitrary external momenta and internal masses contributing to the
perturbation expansion of a Euclidean ¢* theory are evaluated exactly in three and two dimensions. The
final expressions are simple closed forms involving elementary functions only. A method for handling the
multidimensional angular integrations that arise in calculations of massless QED or ¢* in four dimensions

is also discussed.

1. INTRODUCTION

The calculations described below have been motivated
by the recent interest shown in the ¢* theory as a model
for second-order phase transitions observed in three
and two dimensions. Critical exponents and correlation
functions can in principle be calculated in perturbation
theory by using either the e-expansion method developed
by Wilson! or rencrmalized perturbation methods in
the space dimension of interest.? However, in either
case it has become apparent®? that the series are such
that high order terms must be calculated before accurate
quantitative information can be obtained. It is therefore
essential that one devise efficient methods for handling
the multidimensional integrals appearing in the
expansion.

Comparison of different integration procedures re-
veals that the situation in four dimensions is rather
different from that in three and two, With each increas-
ing order in the perturbation expansion of the ¢* theory
one must evaluate graphs with two additional propagators
and one additional loop integral. Since in four dimen-
sions each loop integral is an extra four-dimensional
integral in momentum space, it is generally preferable
to evaluate the graphs in Feynman parameter space
where one parameter is associated with each propagator
and only two extra integrals in each order are required.
A direct momentum space evaluation seems preferable
only when all masses can be set equal to zero and every
propagator can be expressed in terms of the difference
of two momenta. The propagators then have a simple
expansion in four-dimensional hyperspherical harmonics
and the angular integrations decouple from the integra-
tions over momentum magnitudes. Furthermore, the
magnitude integrals are of the form [k"dk and thus
trivial: the angular integrals can be reduced to well-
known integrals if one exploits the connection between
the four -dimensional hyperspherical harmonics and the
three-dimensional rotation matrices.® A particular
example of this procedure, namely the evaluation of the
12-dimensional angular integral described in Rosner®
as the analog of the Racah coefficient, is described in
Sec. V.

In three dimensions, the simple counting argument
given above still suggests Feynman parameter methods
preferable to direct integration; in two dimensions both
methods require roughly the same number of integra-
tions. However, by using the analytical expressions
derived in Secs. II and III for single-loop graphs, the
dimensionality of the integrals that must be handled
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by numerical quadrature methods is actually less in the
momentum space representation, Furthermore, because
the explicit formulas given below for the three- and two-
dimensional one-loop graphs involve only elementary
functions of the external momenta, these formulas are
very convenient for use in any subsequent numerical
integration,

The results of the one-loop graph integrations can be
expressed in terms of the dimensionless invariants
which are conventionally used in discussions of the
Landau singularities of these graphs.” Let the internal
propagators of an n-vertex one-loop graph be (m':_’ + Kf)",
i=1,2,...,n and define the external momenta

ki/:Ki—Kl' 1)
The dimensionless parameters
vy = i mi k5 Qmom,), 2)

together with the masses m,, then completely
characterize the graph. From the n xn matrix y,, con-
struct first the determinant D™,

D(n):detl_\)“_l, (3)
then the determinants F{» obtained by replacing the

elements y,, in the /th column by mz/’”v

F;"’:detiy“(l =8, + bmy/m;)o,, |
el
=53 5 (miD™), (4)
Yy

and finally the principle minors D{™" obtained by

eliminating the /*" row and column {rom y,,

DY =det|y, |, i,j#1. (5)

The subscript 7 will be dropped from D{"*" if no
ambiguity can result. The three-dimensional triangle
graph is then given by

3
- : -1
TOD = 1y myman™ dsKliﬂ(mf +K9)

=arctan (D®)/2/CY/ (D) /3,
where

C=1+y,+ty5+ Y. (7)

For physically allowed momenta, D™ is nonnegative
and the arctan lies in the interval [0, n/2]. Henceforth
it will be understood that square root denotes positive
square root, and arctan and In respectively denote the
principal branch of Arctan and Ln, whenever the
momenta lie in a physically allowed region. The three-
dimensional box graph is
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4
QU = mlmz7n3m4n‘2fd3K1i£I](mf ~1~Kf)‘1
1
:é(Z——F;“T;”*) /D, (8)
I=1 ¥,
where T{*® are the three-dimensional triangles
T3 =arctan ((D{>)*/2/C, )/ (D{*) /2. (9

The C, are constructed from the elements of D{® exactly
as C is from D® [cf. Eq. (7)]. The two-dimensional
triangle is
. 3 _
T¢2¢) — mlmzmgﬂ'lj delil}l(n’l? +K3) : o)

3

1
= g(Z — F;”B;M’)/D“),

=y m,

where the B;z'” are the two-dimensional bubble graphs

B = mymun” [dPK,(m + K37 m + K3
=y + - D2/l - 1) /2

and B{® and B{*) are obtained by a cyclic permutation
of 1,2,3. The three-dimensional bubble, included for
the sake of completeness, is

BB = mymor? [ K, + K3 (ml + K3

(11}

(12)

The evaluation of the bubble graphs is an elementary
excercise and is not discussed in this paper. The three-
dimensional triangle graph is determined in Sec. II by

a direct evaluation of the integral in Eq. (6) in
momentum space and again in Sec. III by Feynman
parameter methods. The two-dimensional triangle
graph has been evaluated as an intermediate step in

four -dimensional calculations,® but can also be obtained,
together with the three-dimensional box graph, by

using our analysis in Sec. III, There we show that in d
dimensions, any one-loop n-vertex graph for n=d+1 is
related to the (z — 1)-vertex graphs by connection
formulas such as (8) and (10). Another example is the
four-dimensional formula

p(4d) — é(sz _1_ FI(S)Q;%))/D(S)

I=1 My

=2m my ."alI‘Cta.n(k12/(;«;/11 + le))/klz-

(13)

for the one-loop, five-vertex “production” graph P in
terms of the known®® one-loop, four-vertex scattering
graphs.

Although the expressions given above for the one-loop
graphs are in some sense the simplest possible, they
are not always the most suitable if their actual
numerical value is needed for, say, use in numerical
integration routines. Therefore, in Sec. IV we give a
few alternative formulas which are both simpler to
evaluate and more stable against roundoff error.

The four -dimensional “Racah” coefficient, derived in
Sec. V, is

R= (ﬁ %‘) C,(c0s6,,) C, (cos6,,) C,(cosb,,)

izt
xC,(c0s8,) C (cosb,,) C (cosby,)

B {p/Z /2 7/2}2
V2 m/2 u/2 ’
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where the brace expression on the right is the 6-j sym-
bol in three dimensions.*® The integrals in (14) are over
the four-dimensional solid angles Q, that respectively
specify the directions of vectors k;. The Chebyshev
polynomial C,(coseu):sin((l + 1)9”)/sin9“ is the four-
dimensional analog of the Legendre polynomial; ¢, is
the angle between the vectors k, and kj.

As with all multidimensional integration, the correct
choice and sequencing of integration variables is crucial
in determining how hard or easy the eventual calculation
turns out to be. Therefore, in the following sections we
present mainly those details which display the choice of
variables and coordinate systems.

il. THE THREE-DIMENSIONAL TRIANGLE GRAPH

To evaluate the three-dimensional triangle, we
rewrite the propagators in Eq. (6) in the partial fraction
form

(mE-mi+ K2~ K (me —mi + K5 - KD
X (m> + K2 + cycelic perm.
= (mg - m?"'kiz -2k, Kl)-l(mg - m?"'kfs -2k, K1)-1

x{m?+ K2y + eyclic perm. {15)

and consider each of the three resulting integrals
separately. The singularities introduced into the
individual integrands by this procedure are inconse-
sequential. Since the real part of (A zie)" (Bxie) is a
principal part term plus the term +7°5(4)6(B), the only
possible error in (15) is

+ 2m,m2m3fd31{,6(m§ - ng + k?z - 21{12 ‘ Kl)ﬁ(mg - y;q? + kfs,

-2k, - K,)im?+ K2 + eyclic perm. (16)

By integrating (16) we find a possible error of +3n/
(D*®*)!/2 for each of the three terms but this is already
implicitly contained in the principal part formula
derived below [cf. formula (24)]. The correct additive
term is finally chosen by the constraint that in the limit
kf, =0, TOD=2m mamslm, + my) " ony + ma) " ong+ my)™"
as determined by direct integration of Eq. (6},

In the integral over the first term in (15) we choose
cylindrical coordinates with the %, axis perpendicular to
k,, and k,, and then write d°K, =kdkdbdk,, kK,
=kkcosd, and kK, =k 5k cos(8 - ¢) where ¢ is the
angle between k,, and k;;. Since the ., dependence is
entirely contained in (m}+ K?)™ = (m} + &> + 2™,
elementary integration of this first term in (15) then
yields

kdk dae -
2mm12ma'/;m§ + kE)I/Z/EF(mZ - mi+ k3, - 2k 5k cos6)™

X[772§-m§+kf3 —2}31312005(9— qb)}‘l. {17)
The integral over 6 is most easily done by residue
methods which yield

kdk 1 Rig
= — + (2 ~— 3)
2m1M2n73ﬁnzf + B2 S1p @y~ Sk, sing ( (18)
where
S1o=[0,, — 43, (mi+ kz)]l 2
012:{m§_mf+kf2>2+4m§kf2; (19)

ngklz(mi - mf +kf3) _km(mg - mf + k?z) coso.
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The constants in (19) are related to the dimensionless
invariants defined in the Introduction by

Ui = 4m37n§(yfz -1},
Qgkyp = 2mimiFY (20)

2 2 o2 22 2.3
a5+ Oypky; Sin®¢ = dmimomsD®.

The changes from geometrical to algebraic notation in
(20) are readily achieved with theuse of the scalar
product, 2K, Ky =2k, k), COSG =k}, + k33 — k3, and area,
Aly ki sin’ b =2y kY + 2kE,R3, + 2kdakhs — Ry — ks~ R,
formulas,

We now note that with two variable changes, the inte-
gration of the first term in (18) is elementary. First,
write m? + k%= x® so that kdk/(m?+ k%" /* = dx and
Si1p= (0, — 4k5,x*)Y/?. Second, write 2k,,x=z+ 0,,/(4z)

i

to eliminate the remaining square root $,,=i[z - 0,5/
(42)]. The limit on the z integration corresponding to
the limit £ =0 is z,=m by, - i0mE - m?+£%,)/2. With
these changes the first integral in (18) becomes

dz 2k, 8ing
2 paded 13
mxmzmafi (22k 15 sing + a,) _4m‘i7’n§m§D(3) (21)

which reduces, upon integration, to

i Lnf22R1sSing + o, - 2mymamg (D)2
2(D®V/E T\ 22k, sing + a5 + 2m g, (D)TZ

(22)

with real part given by

m3(m§ _m§+k§2) (D{3))l/2)~ (23)

1
Arct:
W re an( zm:lgmz F§3)

The corresponding formula obtained by integration of the second term in (18) can be added to (23) with the aid of the

addition formula Arctan(x)+ Arctan(y)= Arctan((x +y)/(1 ~

xy)). The sum is

1 2mAD N pimi —mi T ELFS + malm?E — mi + )F‘a)\) 1 (D)2
AI‘Cta. 1 73 2 by 12 2 2 3 1 13753 = = Arcta L e A 24
sty Aretan (2 e ) =gy aretan (S22 ) o)
where the result on the right follows upon cancellation of the common factor 4m(mimiD'® - k%k3, sin’¢) in the
argument of the Arctan function.
Finally, with the help of Arctan(x)+ Arctan(y)+ Arctan(z = Arctan((x +y + z — xy2)/ (1 = xy - xz ~vyz)), one can
add to (24) the results of the integrations of the remaining two terms in (15). In this case a common factor
(12 - D(y,5 = Dy, — 1) can be cancelled from the argument of the final Arctan and one obtains
1 20N 21+ y 45ty )>
(3d) _ 12 13 23 .
T 2Dtz ArCtan< Aty +yi:+95)° -DY (25)

2

Use of the double angle formula, Arctan(2x/(1 ~ x*))=2 Arctan(x), and the known value of the integral at k%,=0 then

completes the derivation of Eq. (6).

It is by no means obvious from either the present calculation or the alternative derivation given in the following
section whether the cancellations in, say, Eq. (24) are accidental or whether there is a profound reason for the
very simple structure of the final answer. Compared with the apparent complexity of the four-dimensional
triangle and box formulas,® the result for the three-dimensional triangle is indeed surprising.

Ili. FEYNMAN PARAMETER METHODS

The connection formulas (8), (10), and (13) are
derived below with the help of the Feynman parameter
representations for the corresponding integrals. In this
representation a one-loop n-vertex graph in d dimen-
sions is’

I =K f(gl da,) (1 -2 a)ym)/#n (26)

for n>d/2. The constant K;"’ depends on the particular
normalization used in the momentum space representa-
tion of the graph and Y'™ is the quadratic form

n

(m— 7%
Y _;zfy“aiaj (27)
with
§ij:§(7n?+ mi+ k). (28)

The ;U differ from the y,, in Eq. (2) only by mass
factors. The constraint that the o, are positive,
together with 77 a, =1, defines the region of integration
in (26) as the interior of an (4 — 1)-dimensional hyperte-
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|
trahedron. Its “volume” is bounded by (}) “faces” or

“areas” on which one of the &, vanishes: the “faces”
meet at (3) “edges” on which two o, vanish. This
sequence eventually terminates at the vertices of the
hypertetrahedron where all but one a; is zero.

The expression (26) explicitly displays the hyperte-
trahedral symmetry of the graph but this symmetry is
lost in intermediate stages of a calculation if one pro-
ceeds directly by choosing some particular a, to begin
the integration. To maintain explicit symmetry we
instead replace the region of integration by a sum of x!
regions interior to other hypertetrahedra; the latter are
characterized as follows. Each has one vertex at the
point where the quadratic form Y™ is stationary. The
second vertex is the stationary point of Y on one of
the n “faces” and the third is the stationary point on one
of the n — 1 “edges” of the “face.” The nth and last
vertex is one of the two vertices of the original hyper-
tetrahedron that is common to the particular “face”,
“edge”, - - - sequence chosen above. Thus each of the new
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hypertetrahedra is a cone fanning out from a vertex at
the stationary point of Y™ toward a particular subregion
on some “face.” It is clear that the total original
“volume” is included in the sum of all these cones pro-
vided all subregions on the “faces” are covered. But
this argument can be repeated by replacing “volume”

by “face” and “face” by “edge” and we eventually con-
clude that the new hypertetrahedra indeed cover
correctly the original “volume” defined in (26).

Consider now the particular integration “volume”
2, m,- ) in which o, =0 defines the “face,” a,=a,
=0 defines the “edge,” and so on. Denote the a, at the
stationary point of ¥ by f{" and define a new integra-
tion variable §,,

@, =f"(1-8,), (29)

which is just @, shifted and scaled so that the integration
interval is [0, 1]. Next shift and rescale the remaining
a; to eliminate all dependence of the integration limits
on B,. Specifically, replace a, by f{"(1 -8,)+ a,8;;

note that the new «, are identical to the old on the “face”
a,=0. Then

J @aa,) o

:flmfol .Bf'zdﬁ,f(}} da)o(

1-2 @)y
i

1 _Zai)(y(n))a/zm_ (30)
i#1

The @, on the right-hand side of (30) are understood to
be restricted to lie not only on the “face” «,=0 but also
within the boundaries of (I, m, - - - ): that is, they lie
within a cone fanning out from a vertex at the stationary
point of Y{n on the “face” to a particular subregion on
the “edge” o, = a_=0. We deduce the dependence of Y'"
on B, and on the remaining o, from the fact that o,
=const, for all ;#], is a straight line emanating
radially from the stationary point of Y so that Y™
=A+ g2B(a) is the only functional form consistent with
its quadratic nature. From the known values of this
function at the points 8, =0 and 8, =1 we determine

Y(n)zé(n)+ﬁf(yfn-1)_O(n))’ (31)

where 6™ is defined as the stationary value of Y and
YD =y (g, =0). (32)

The steps leading to (30) for the “volume” integral can

clearly be repeated for the “face” integral to yield

f(nda )5(1 Zja Wytmy/2n

n

:f:n"-l)fo B;-sdﬂmf(w{,lmdai)é(l _'*E

C(.)(Y("))d/z-", (33)
i¥l,m 4
where f ("'’ is the value of «,_ at the stationary point of
Y on the “face” o, = 0. The quadratic form is now
yim=gm 4+ Blz[é(n'l) -5 4 gE(yn=2) _ 6(n-1))] (34)
m
with 6% the stationary value of ¥V and Y (-2 = ytn-
(a,=0). Transformations of the form (29) can be used
to rewrite the remaining Q, integrations in (33) but the
resulting explicit formulas are not needed in the follow-
ing discussion.

Explicit expressions for the f{»’ and 5'»’ are obtained
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as follows. The «, at the stationary point of y®,
subject to the constraint " «; =1, are given by the
solution of ‘2"5”01 = A and hence

f(n)_)\F(n)/D(n) F(n)/A(n) (35)
where
D™ =det|y,,|,
(n) %‘ factor (5,,)= 9 S (36)
F, = cucofactor {y,, _a—D
Al = iftn)_
i

The derivative expression in (36) for F{® follows from
the specific form (28) for the matrix elements y Vi Note
that D and F differ only by mass factors from the dimen-
sionless D and F defined by Egs. (3) and (4). The
stationary value of ¥ is

o) = Dim /A tm) (37)

There are corresponding formulas for the lower order
f# and 8 in terms of the lower order Y. The
remark following Eq. (5~) applies here; the subscripted
symbols D{"V, A{mD, F{n-D=(3/am3)Di"), Din®) - - -
will be used if it is necessary to identity explicitly the
absent rows and columns,

Some insight into the above formulas can be obtained
if one makes use of certain identities derived by Wu®
both by explicit manipulations of ¥ and by use of some
theorems on determinants. One of these identities is

no~
A™ =23 Fim =det

i

-k "k, |, 4,i=2,3,...,n (38)
so that to within numerical factors the A™ are the

squares of the k-space “volumes” of hypertetrahedra

constructed by joining » points with the lengths Ry The
first few A are AV =1, AP =_r%,, A® = |k Xk I?,
A =~ [k, 'k, Xk, 1%, Another identity is
(F;n))zzA(n)B(n-l) — Al (39)
from which we deduce that
1 \( 2
5(7!- ) 5‘")_ A(n =) (f(n)) (40)

and, since the right-hand side of (40) is less than
or equal to zero for physically allowed momenta, that
the stationary point of Y'? is a maximum. For the
triangle graph one can derive what is an off-diagonal
variant of (40),

F:’;B)I?:(is) ~5(3))7

- AOFRF =K, Kymia (41)

and, by direct manipulations of the determinants or
otherwise, show that

fr;3)F§?%+f~(3)i(2):m2At3)_5(3)’ (42)
mff’;g’;‘és’ D'3)F‘2’F‘2)
= (F1F 15 = M ps) (A ~ D), (43)

We return now to the proof of the connection formulas
(8), (10), and (13) by explicitly performing the 3,
parameter integration in Eq. (30). The relevant part of
that integral is
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Fim [ 1By, (e e

:f;n)folﬁ?-zdﬂl[yn) + By nb) _ §lm)]e /2o (44)
which, for n>d+1, can be evaluated recursively
beginning with

;n)folB;z-z dBl(Y(n))d / 2%n

— - n n n- /2=n+1

=@n~d-2)" (/s (Y1)

+ (71 -d- l)folﬁ?-z dﬁl(Y‘n))d/z-"“}- (45)

The second term in the brace expression in (45)
vanishes; obviously so because of the prefactor of the
integral for n=d +1, and for the reason discussed be-
low in the general case. If n>d +1, the matrix elements
y,, are not all independent and the k-space “volumes”

A vanish so that f " and 6" are infinite. However,
by arbitrarily reinterpreting the external momenta ku
for the graph as vectors in an (» — 1)-dimensional
space, and then displacing them appropriately, we can
ensure that all expressions including the integral (45)
are well defined, Then, having performed the integra-
tion in (45), we may legitimately take the limit in which
the momenta kj again take on their physical values in a
space of 4 dimensions. The ratio f{"/6'" = F""/D‘"’
remains finite whereas the factor Y'" is mfmlte for

all 8,# 1 and the integral in the brace expression in (45)
vanishes.

The remaining factor (Y1) /2 in the right-hand
side of (45), when inserted into the a, integrals in (30),
can be recognized as a contribution to an (» - 1)-vertex
graph I{"1(7) on the “face” &, =0. The result of per-
forming the summation over all integration “volumes”
QU,m,--)1is

[(n)_(zn d-2) (K(n)/K(n-l)

x 2 Fmpne0(1)/D'm (46)
1
if we simply reinsert the constants dropped in going
from (26) to (30) and then to (45). Finally, if the graph
normalization in momentum space depends only on the
dimension, then (2n - d - 2)'K{®/K ;™" =} and thus
I =32 Fimpro )/ (47)
valid for all n=d + 1. If (47) is expressed in terms of the
dimensionless variables F{® and D™, the connection
formulas (8), (10), and (13) are obtained as special
cases.

The formalism developed in this section can also be
used to check the triangle graph calculation presented
in Sec. II. If we write T'*" as the sum of six terms of
the form (30) and (33) we obtain

T3 = mlmzmng,m, (48)
where, for example,
Too=3/7 [ By db, [, db,
><{6‘3’ + 52[‘5(2) -5 4 35(5(1) _ 5(2))]}-3/2 (49)

which after two elementary integrations becomes
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TSZ‘2 33)f<2)[5(3)(5<3) 5(2))(5(2)_5(1))]-1/2
6(1)

52 _ 5N 1/2
X {Arctan[(S—(—g)——_—— . Sm

6(2)

52 _ 5tH\1/9] )
— Arctan| m (50)
This last formula can be rewritten as
1
T32:W{Arctan(—-;f7§-) (D(3))1/ )
A F (3)y1/2
- Arctan | =% T (A ) (51)

if we use the identities (40) and the explicit value 5
=m?%. The first term in (51) is just the expression (23)
and furthermore the sum over the six terms in (48) is
exactly the sum that led from (23) to (25). The only new
insight we obtain by the present method is that the
mysterious cancellation in (24) is seen to be related to
the determinant identities (42) and (43). (I do not know
whether this might generalize in some way to simplify,
say, the four-dimensional box graph calculation). The
second term in (51) does not appear in (23) but with the
use of the Arctan addition formula, the identities (41)
and (42), and the explicit expression A® = |k, ¥k, 1%,
we find

~(z)

Fy
Arctan
F3

F(2)
(A<3>)1/">+ Arctan< (1\‘3))1/2>

F2 (52)
= Arctan((A®)'/2/k,, K, ) = ¢

which is the angle between k;, and k;;. The complete six
term sum thus simply leads to an extra contribution
17/(D')'/? that only serves to shift the Riemann sheet
on which one evaluates the Arctan function in Eq. (25).
We may ignore this contribution just as we ignored

the & function contribution (16) and rely instead on the
boundary value 7% (k= 0) = 2mymgmismy + i)™t

X (m, + ma)" my + ms)™" to determine that for physically
allowed momenta the correct Riemann sheet is the
principal sheet in Eq. (6).

IV. NUMERICAL EVALUATION

The one-loop results derived above are not in the most
suitable form for use in numerical integration routines.
The external momenta at which formulas such as (6) and
(8) must be evaluated can range over many orders of
magnitude and a direct evaluation of the determinants
can lead to a tremendous loss of significance in the
numerical results due to cancellations between large
terms of opposite sign. For the case of equal internal
masses which we discuss below, the simplest way of
eliminating this problem is to rewrite the graph expres-
sions in geometrical notation. For example, with all
m;=1, D) in Eq. (6) can be written

D = 3kl Rk, + 4AY,,, (53)

where A,,, is the area of a triangle with sides k,,, ki3,
and k. It is relatively easy to set up the numerical

integration procedure so that the area, and hence D
via Eq. (53), is specified without loss of significance.

To evaluate the three-dimensional box graph, with all
m;=1, we require
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D™ = _T?-36Q7, (54)
where
16T = (k12k34 tRigkeyt k23k14)(k12k34 + Riskoy
- kzskm)(k 12R34 — R13R2q T Rogk 14)
X(_klzk34+k13k24+k23kz4) (55)

and Q is the volume of a tetrahedron with sides Ry, join-
ing the vertices =1, 2, 3, 4. Again it is relatively easy
to avoid loss of significance in calculating the volume
but a direct evaluation of T using (55) can still involve
substantial cancellation between large terms. However,
Eq. (55) does suggest that we interpret T' as the area

of a triangle with sides k ,k4,, R13k24, and kyk,, and
although this area is not of direct geometrical signifi-~
cance in momentum space, we can exploit this informa-
tion to reduce the cancellations in its evaluation by
further manipulations as follows. We first determine
the largest of the products k,yka,, kiskas, and kyk,,: for
purposes of illustration below, we assume this pair is
kask14- By expressing both £,, and k,, in terms of the
remaining momenta, we can derive the identity

Kiskia ¥ kiskis = kigkla
=2k 15k 44R 13k 54 (COS b, COS D, + Sing, Sing, cosy)

=2k oks4k 13k 54 COSY, (56)

where ¢, is the angle between k,, and k;;, ¢, is the angle
between k,, and k,,, and x is the angle between the two
faces of the tetrahedron containing the vertices 1,2,3
and 2,3,4. Eq. (56) is of the form of a scalar product
formula and we can interpret ¢ as the angle in the
triangle between the two sides k,,k,, and ky3k,,, and
opposite the side k,,k,,. The area expression (55)
reduces to

T = 3R1ok sk 5k, SinG, 67)

which, since it expresses T in terms of the two smallest
products k,,ks, and k,52,,, can only entail loss of signifi-
cance in the case of an “accidental” cancellation when-
ever y=7. Now y=7 implies x=w, ¢, =n — ¢, and this

is just the condition that the ki, making up the tetra-
hedron be coplanar and that the points i=1, 2, 3, 4 lie

on a circle. Since it is easy to design numerical integra-
tion routines that avoid coplanar momenta, the expres-
sion (57) together with the definition of y given by (56)
should be adequate for most purposes.

For completeness we give the formulas for F;‘“ cor-

responding to (54) for D). Again, all s, =1.

F{Y = — Apyik 1ok sk 13k sa (81N, COS D,

- sing, cose, cosy),

FiY = — Aok ks 15h0q(8iNG, COSH,
- sing, cos¢, cosy), (58)
F§ = = (kg - kyy FUO + Ky, ko, PO/ 12, — 1892,
F3 = = (kyy " Kyy F{Y + Ky, " Ky F{)/ 13, — 18027

The angles ¢,, ¢,, and x are as defined for Eq. (56) and

Am is the area of a triangle with sides By By and k.
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V. ANGULAR INTEGRATIONS IN FOUR DIMENSIONS

Four -dimensional angular integrations such as the
ones needed to evaluate the “Racah” coefficient in Eq.
(14) can in principle be done by expanding the Chebyshev
polynomials in terms of conventional four-dimensional
polar hyperspherical harmonics. ' However, an
equivalent but technically much simpler solution is
possible because there exists a particular coordinate
system for which the four-dimensional hyperspherical
harmonics are the three-dimensional rotation matrices
and all the known three-dimensional results can
immediately be applied.

If we label these particular coordinates », «, B, 7,
then the four-dimensional Cartesian coordinates x,y, z,
w are given by'?

x:rsing sina;y’ y:rsing cosaz—y ’

(59)
. B _. aty B B a+y
2=7Cosy sin—5—> w=yCosy Cos—

The four-dimensional solid angle is completely covered
if we take O< o< 27, O0<B< g7, O0< y< 4y, The Jacobian

d(xyzw)

1.3 o5
2(rapy) |~ 37 SnF

and hence the normalized integral over the four-dimen-
sional solid angle can be written as

_d_Q_ 1 f4' /r ) /2g
/2712*16n2 , @) agsimff da

which is exactly of the form of an integral over Euler
angles in three dimensions.

(60)

Given the coordinate definitions (59) and the definition
of the rotation matrices®®
DY) (Q) = eimvd') (B)eime, (61)
together with the specific values

AN 2B = 413y 2(B)= cost
(62)

AR k@)= - a3 () =sin

we deduce that the four-dimensional scalar product

Ty ry=xx vy, v, + 2,2, + ww, can be written

vy 1=y DD @)DV (@,). (83)

Furthermore, if we define
Fy=Fy(@,8,)= 2D @)D /2(8,),
then it follows that

(64)
F,F\=F,_+F,, (65)
as can be shown by using the product formula'®

D‘m (Q)D(*m ()

m'lml m’%mz

:E(2j+ 1) {1]2] Jije]d D*(j)(g) (66)
i mimim’) \mymymf mm

and the orthogonality of the 3-j symbols on summation

over all m] and m,. With the aid of (65) we can derive

the recursion relation
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TIFI —rgF,-l _LF +Q 1’1Fl+1—7’2F1 (67)
2 + 2 F - 1 2 + 2 F
VT Ve — Vel 71 Yy V1TV =¥ ¥l
and hence the expansion
1 1 i ¥l
= =), =2 F 68
(r,~r,)? 7’?+7’§‘7’17’2F1 R (68)

for y,<y,. With the conventional choice of angular
variables in four dimensions, the expansion coefficients
in (68) are the Chebyshev polynomials C,(cos6,,)
=sin(({ + 1)6,,)/siné,,. Therefore, we make the
identification

C,(cosh )= F (Q,,9Q,), {(69)

a result which can also be found in Englefield. **

By substituting F, for the C, in Eq. (14) we can reduce

the expression for the “Racah” coefficient to a sum of
products of four integrals of the form™

LS [ asons] s 0
6.7 0(17/ Od,BsmB da D ()

[
(i)

mymg

_ { J1iais Juiz2ds \.
mimimy [\ mmmg

Finally, the resulting sum of products of eight 3-j
symbols can be written as the square of a sum of pro-
ducts of four 3-j symbols and the latter sum is the
invariant combination that yields the 6-j symbol in Eq.
(14). The algebra in the derivation of (14) is somewhat
complicated by the need to keep track of all phase
factors arising from the transformations D* {2)(Q)
=(=)m-mp's) (Q) but is otherwise straightforward.

m'-m

VI. CONCLUDING REMARKS

The purpose of the present calculation has been to
derive expressions for simple graphs in ¢* theory that
can subsequently be used in numerical integration
routines to evaluate more complicated graphs. The
three -dimensional triangle and box graph expressions
derived here have made possible the evaluation of all
contributions to coupling-constant and propagator
renormalization constants up to the 6-loop level.* '
Higher order calculations of the renormalization
constants would be worthwhile but may not be feasible
unless the analytical calculations presented here are

x D2 (@)D (2) (70)
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extended to include simple two- and three-loop graphs.
Unfortunately, we cannot say whether such an extension
is possible. The simplicity of, say, the three-dimen-
sional triangle expression is intriguing but whether this
is accidental or whether correspondingly simple ex-
pressions for other graphs will result is not known.
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The geometry of the gravitational field at spacelike infinity
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The asymptotic structure of gravitational fields at large spacelike separation from sources is studied.

Limits of spacetime fields are discussed in terms of a three-dimensional boundary manifold representing
spacelike infinity. The boundary is endowed with the metric of a timelike unit hyperboloid. With
sufficiently stringent conditions on the asymptotic spacetime geometry, the total energy—momentum and

angular momentum emerge as integrals over any cross section of the hyperboloid at infinity. It is possible
to identify physically relevant weaker conditions under which the energy-momentum, but not the angular
momentum, is well defined. Under still weaker conditions, the energy—-momentum also loses its meaning

even though the spacetime admits a Minkowskian asymptote.

1. INTRODUCTION

An isolated system of gravitating sources is modelled,
in relativity theory, by a spacetime which is asymp-
totically flat. The geometry of such a spacetime re-
sembles the Minkowski space of special relativity at
large distance from the sources. There is, however,
considerable ambiguity in the notion of an isolated sys-
tem and in the notion of an asymptotically flat space-
time. Relativity theory itself does not require a defini-
tion of either of these. The concepts are introduced in
order to make certain classes of spacetimes under-
standable by describing their gross features in terms
which are familiar from the physics of special rel-
ativity. In particular, definitions are normally chosen
S0 one can ascribe a meaning to the total energy—mo-
mentum (or mass) of the system. It may be desirable
to employ a definition which is restrictive enough that
the angular momentum of the system is also well de-
fined in terms of the asymptotic gravitational field.

A major ambiguity in the notion of asymptotic flat-
ness stems from the different ways one can be far
away from the sources. Based on the work of Bondi
et al. ,' Penrose® adopted conditions which usefully
characterize spacetimes in which the geometry becomes
Minkowskian asymptotically along outgoing null geode-
sics. For such spacetimes one has a boundary mani-
fold ¢* representing future null infinity. Certain fields
induced on ¢* from the physical spacetime have signi-
ficant physical interpretations. In particular,the mass
of the system at a given retarded time is an integral
of such quantities over a cross section of ¢*. If the
integration is performed over an earlier cross section,
the mass will have an equal or greater value, the dif-
ference being the energy radiated to infinity between the
two retarded times. Allowing the cross section to re-
cede indefinitely to the past on ¢*, one would expect to
get a limiting mass which represents all the mass of
the spacetime. In a certain sense the past limit of ¢+
is spacelike infinity, and the limit of the mass integral
is the (time-independent) mass defined at spacelike in~
finity. This is certainly true in the trivial case of
Minkowski space. If the spacetime mass is nonzero,

HPresent address: Department of Mathematics, North Carolina
State University, Raleigh, NC 27607,

Y)This work was supported in part by NSF Grant No,
MPS74-14191-A01,
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however, it appears that spacelike infinity cannot be
represented by a completely regular point of the
Penrose boundary. Considerable care must then be
taken in regarding spacelike infinity as a past endpoint
of ¢*. Ashtekar and Hansen® are exploring this matter
in detail.

Predating the concept of null infinity was the idea that
spacetime should become Minkowskian at large space-
like separation from the sources. Various notions of
spacelike infinity in terms of the asymptotic properties
of the spacetime geometry are as old as relativity
itself. Relevant asymptotic conditions were sharpened
by ADM,* who were able to produce integral express-
ions for the spacetime energy-momentum and angular
momentum in terms of the asymptotic geometry. Their
method involves locating any spacelike hypersurface
which behaves asymptotically like a hyperplane of
Minkowski space, and then integrating, over large 2-
spheres, quantities derived from the metric and ex-
tringic curvature of the hypersurface. The energy—
momentum and angular momentum are limits of such
integrals as the integration surface expands to infinity.

York,® along with O°Murchadha, has refined the ADM
formalism, freeing it from its dependence on a back-
ground metric in the initial data hypersurface and
making it manifestly covariant. The form of the en-
ergy—momentum integral adopted by York is an ex-
pression which Brill® had observed to be valid in the
case of an initial data hypersurface with vanishing ex-
trinsic curvature.

Using conformal rescaling techniques similar to those
employed in the construction of J*, Geroch” has shown
how to represent spatial infinity as a single point which
represents the completion of an asymptotically flat
initial data hypersurface just as Euclidean 3-space can
be conformally mapped onto a 3-sphere by adding a
single point at infinity. Limits of fields on the initial
data hypersurface are represented by direction-depen-
dent tensors at the point of infinity. The spacetime en-
ergy—momentum is an integral of one such quantity over
the sphere of directions at spatial infinity,

The discussion of spacelike infinity to be presented
here differs somewhat from the formulations mentioned
above. Spacelike infinity will be represented by a
three-dimensional boundary of the four-dimensional
spacetime. The characterization of asymptotic flatness
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therefore applies directly to the spacetime and not to
some initial data hypersurface. One consequence is
that it does not lead to awkward questions such as
whether or not an asympiotically flat initial data hyper-
surface can be arbitrarily translated and boosted (in
some sense) without disrupting its asymptotic flatness.

The existence of the three-dimensional boundary
representing spacelike infinity will mean, roughly
speaking, that the spacetime metric reduces to a
Minkowski metric along outgoing asymptotic spacelike
directions. There remains the question of how fast
the two metrics should converge. If the spacetime’s
energy—momentum is to be well defined, it is ap-
propriate to require, in effect, that the curvature
tensor fall off like 1/#° without oscillatory behavior near
spacelike infinity. Although this restriction is not quite
strong enough to guarantee a well-defined angular mo-
mentum, it is already restrictive enough to exclude
certain spacetimes which one might wish to regard as
asymptotically flat. For example, one might think that
a model for a bounded source which radiated only a
finite amount of energy during its entire history should
be an asymptotically flat spacetime. One can imagine,
however, a source which emits gravitational waves of
fixed amplitude in spurts of variable duration. If, look-
ing to the past, the spurts were to become progressive-
ly shorter, such a source could have been emitting for
all time with only finite energy at its disposal. Looking
off in spacelike directions from such a source, one
would see occasional oscillatory behavior even in the
1/¥ part of the curvature beyond any fixed distance,
and so the spacetime energy—momentum at spacelike
infinity could not be defined. Such a source is, of
course, rather contrived and unphysical.

Even restricting attention to sources which radiate
smoothly in the past, it is easy to see that the finiteness
of radiated energy is not sufficient to ensure a 1/7°
dependence of the curvature tensor in spacelike direc-
tions. Suppose the time dependence of the radiated
power is given by (—¢£)” in the remote past. Then, pro-
vided n < ~1, the total energy radiated will be finite.

If »> -2, however, the curvature will fall off less
rapidly than 1/72 in spacelike directions. One way to
understand this is to recognize that, at ¢*, the energy
flux is given by the square of the news function Ny i.e.,
N~{~u)"/?, where u is the retarded time on ¢*. The
radiation part of the curvature is given by the time
derivative of the news function and therefore has a

(= wu)/2! dependence on ¢*. Along any outgoing null
geodesic, the radiation part of the curvature decreases
like 1/7, where » can be regarded as affinely para-
metrizing outgoing null geodesics. Since, at spacelike
distance » and {=0, the radiation was emitted at - ¢ ~r,
the » dependence of the curvature is given, in this
rough argument, by »"/2%, If n> ~2, therefore, the
curvature will not fall off as fast as 1/#°. Examples

of this type also may be judged to be unphysical on the
grounds that if the sources are bounded in space, then
some unrealistic mechanism is needed to excite the
sources so they will radiate. The mechanism may be
incoming radiation or an artifical time-dependent
equation of state for the sources.
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If one wants to examine realistic physical models
which are not stationary, it may be necessary to turn
to systems which coalesce from unbounded distances.
No exact solutions of this type are available for study,
and the motions of source particles are not yet rig-
orously understood.® Nevertheless, it is reasonable to
assume that at early times such a system would evolve
in a Newtonian fashion. From this it follows that the
dimension of the system would behave like (- £)?/% in
the remote past. The quadrupole moment would be ex-
pected to go as (- #)*/3, and one may suppose that the
power radiated would go as the square of the third time
derivative of this moment®; i.e., the power radiated
would behave like (~#)-1°/3_ By the reasoning of the
preceding paragraph, the radiation part of the curva-
ture would fall off like v /% at large spacelike dis-
tances. Such a system would therefore be expected to
have a well-defined energy—momentum at spacelike
infinity since the radiation part of the curvature would
not mask the 1/#° limit at spacelike infinity.

For many purposes it is desirable to have a definition
of a system’s angular momentum in terms of its asymp-
totic gravitational field. A satisfactory definition of
angular momentum seems to require that the radiation
part of the curvature fall off faster than 1/#*, For
coalescing systems of the type just described, there-
fore, the angular momentum may not be defined. That
the definition of angular momentum should require
stronger asymptotic conditions than that of energy—
momentum is not surprising. The same is true for
matter fields in Minkowski space, due to the fact that
rotational Killing vector fields grow larger with separa-
tion from the origin, whereas translational Killing
vector fields do not. Worthy of emphasis is that, in
general relativity theory, bounded stalionary systems
may be the only realistic physical systems for which the
angular momentum is well defined by the spacetime
geometry near spacelike infinity.

The precise concept of spacelike infinity adopted here
will be modelled on a boundary 2, of Minkowski space
(M,nab), which represents projective spacelike infinity.
Every spacelike ray of (M,n,,) acquires an endpoint on
P, and each point of £ can be identified with an equiva-
lence class of parallel spacelike rays. The points of
J can therefore be identified with the unit spacelike
vectors at any point of M. The space of such vectors is
a timelike unit hyperboleid, and the boundary / also
acquires this metric structure. There are noteworthy
advantages of representing infinity as a boundary mani-
fold. The limits of fields on spacetime, if the limits
exist, become ordinary tensor fields on /7. For ex-
ample, a linearized gravitational field, if it has the
proper asymptotic behavior, induces on 2 a pair of
symmetric trace-free valence-2 tensor fields (£,, and
Bab) whose divergences with respect to the hyperboloid
metric connection vanish. Integrals of these tensor
fields over arbitrary cross sections of 2 yield quantities
which may be identified as energy—momentum and
angular momentum of the linearized gravitational field.

A curved spacetime is asymptotically flat if, first
of all, it admits a boundary manifold 7 with properties
{(specified in Sec. 3) in common with spacelike infinity
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of Minkowski space. Conditions on the asymptotic cur-
vature may also be imposed. Roughly speaking, if the
curvature is of order 1/#° and nonoscillatory asymp-
totically, then the energy—momentum is well defined.
If the part of the curvature which is magnetic (with
respect to a foliation whose limit is /) has a limiting
1/7* behavior, then the spacetime angular momentum
integral also exists.

2. SPACELIKE INFINITY FOR MINKOWSKI SPACE

The points of spacelike infinity /2 for Minkowski space
(M,n,,) represent equivalence classes of parallel rays in
(M,nab). An explicit construction demonstrates that 2
can be realized as a boundary manifold of (M,nab): Let
x be any point of M and let M, be the points of M other
than x itself which lie on spacelike lines through x;
i.e., M, is the exterior of the lightcone of x. On M_ is
a positive distance function »:=17,,x°x*|'/2, where x° is
the position vector of points in M, relative to x. The
hypersurfaces of constant v are timelike hyperboloids
centered on x. The congruence of curves normal to
this foliation are the rays emanating from x. Labeling
these rays by angles x, 8,¢, which then serve as co-
ordinates on each hyperboloid, the chart (v,x, 9, ¢)
covers M, (aside from the points at which the spherical
coordinates are singular). Define § by ¥ :=7"'. Then
the boundary P of M, is incorporated by extending the
range of § to 0 <} <=, The hypersurface }, =0 is the
boundary . Every spacelike ray of M intersects M,
and acquires an endpoint on 2. The points of P repre-
sent angles in M, (or M), parallel rays all meeting the
same point of 0.

Choosing a different point ¥, the above construction
for M, yields the same boundary points P representing
angles of spacelike rays in M. Since every spacelike
ray of M enters both M, and M,, the intersection of the
two regions contains a neighborhood of /. The two
charts, §,x,6,¢), and (§,X, 6, @), are analytically
related in the overlap. Allowing x to vary over all of
M, the charts for M constitute an atlas for M. An at-
las for M=MU J is obtained by extending any or all of
these charts to the boundary /.

The Minkowski metric on M, is ds?*=-}-*dy ? +}-2d?,
where

FIG, 1. The figure depicts the region M, foliated by hyper-
boloids of constant £, The outermost hyperboloid represents
the boundary /© where £=0,
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do® = dx® — cosh?y (d& + sin®6 dy?)

is the metric of a unit timelike hyperboloid. The
Minkowski metric is singular at § =0, and no conformal
rescaling can make it regular on the three-dimensjonal
boundary . On the other hand, there is a metric on

/P induced from (M,7,,). On each 3 =const leaf is an
induced metric &, =2'2pab, where p,, is the unit hyper-
boloid metric. The tensorfield 3k, has a smooth ex-
tension to ), inducing the unit hyperboloid metric on

p.

Representing infinity as a boundary manifold of space-
time makes it easier to discuss asymptotic properties
of fields on spacetime. A scalar field on spacetime has
a limit at spacelike infinity if it is the restriction to
M of a continuous field on M. A scalar field f on M will
be said to be of order 3" provided 3 -"f has a limit which
does not vanish everywhere on /2.

The notion of the limit of a tensor field, on the other
hand, is slightly more subtle than the existence of an
extension of the tensor field to /. The reason is that the
tangential components tend to behave differently from
the orthogonal components. (Here “tangential” and
“orthogonal” refer to a decomposition of the tensor
field with respect to a }, -foliation and its unit normal.
Although the leaves are here timelike hypersurfaces,
the algebra differs in no essential respect from standard
“3 plus 1” decompositions, and the notation here will
follow that of Ashtekar and Geroch.!?) To obtain the
limit of a tensor field on M, one first represents it as
a set of tangential tensor fields. A tangential tensor
field has a limit if it can be extended continuously to

p.

The “order” of a tensor field can be confusing be-
cause the charts near / use angular coordinates. Thus,
for example, although the vector field 8, and the 1-
form df are smooth at 2, the fields § 9, and % -'d6
both have norms of order 3 ° and these two are related
via the metric. In other words § 9, and § -*d6 are what
one would regard as tensor fields of order $°. More
generally, a tangential tensor field T‘;igg::gp is of order
orif Z'"‘"“T:{;g:::‘;g has a continuous extension to M
which does not vanish everywhere on /2.

As an example, consider an electromagnetic field
F,, on M. If the field is the retarded field of some
bouned source which was nonradiative in the distant
past, then the electromagnetic field would be expected
to fall off like =% in spacelike directions. If »® is the
unit normal to § -leaves, then E :=n?F,, and B,:=n’F¥
E%n”eabcdﬁ“’" should be tangential tensor fields of order
% 2. That is to say, the 1-forms 3 E, and 3 7' B, should
have extensions to .

The natural derivative operation on 2 is the sym-
metric covariant derivative D, which annihilates the
unit hyperboloid metric: D p, =0. It is natural in the
sense that for tangential tensor fields with smooth limits
at 2, the derivative of the limit is the limit of the
derivative. Denote by D, also the intrinsic covariant
derivative of § ~leaves (for § >0). If S™7::: is dif-
ferentiable at /2, then D T2 ) =3 ™D, T " is con-
tinuous at 2. If T is of order 3", then D, T::: is of

0w °
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order § ™! gince it has one more lower index than 7:°:
has.

An electromagnetic field F,, on M satisfies V°F, =J,
and V¢F% =0, where J, is the charge current. If the
7, -leaves are hyperboloids centered on a point x, as
discussed above, then V n, =3 h,, where i, is the
intrinsic metric of the hyperboloids. The Maxwell equa-
tions include D°E_=n%J, and D?B, = 0. For a bounded
electromagnetic source, J, vanishes in some neighbor-
hood of P, so D*E, =0=D"B, near P. On /° as well,
then, D°E_=0=D"B, . By virtue of Stokes’ theorem,
therefore, $£,dS® and $B, dS* are both independent of
choice of cross section for integration on 2. (Regarding
/ as a fiber bundle over S? with fiber IR, a cross sec-
tion is homeomorphic to $2.) These quantities are num-
bers associated with the electromagnetic field and de-
termined completely by the asymptotic form of the
field. They are, of course, simply the total electric
and magnetic charges in M.

Of somewhat more interest are the quantities defined
in an analogous way using the limits of a linearized
gravitational field, Such a field may be represented on
M by a tensor field C,, , having the algebraic sym-~
metries of a conformal curvature tensor and satisfying
the field equations V*C,, ,=0. Decomponsing C,, , into
tangential tensor fields yields two symmetric trace-
free tensor fields:

— pt d
Eab =n Ccabdn

and

— * d__ L c. ef d
B, =n°Ch,n* =3n% 7 C 0"

Using a hyperboloid foliation of the type already dis-
cussed, for which the extrinsic curvature is K, =-V n,
== h,,, the field equation becomes the following four
equations:

a
D*E,=0, DB,=0, [ E,= —-edeDCBda -2E,,
and

L nBab :edeDcEda - EBab .

(The tensor field ¢, ,:=n%, , is the normalized three-
dimensional alternating tensor field.) Suppose now that
the fields satisfy these asymptotic conditions: E , is of
order 3° and B,, is of order }°.

In order to define the quantities analogous to electric
and magnetic charges, it is expedient to use the Killing
vector fields and conformal Killing vector fields of /.
There are six independent Killing vector fields K* satis-
fying D K,, =0 and four independent conformal Killing
vector fields £° satisfying Dk, =% (D £%)p,,. These may
be visualized by thinking of / as embedded as a unit
hyperboloid centered on a point x of an abstract Minkow-
ski space. Then the six independent Lorentz rotations
about ¥, when restricted to P, are Killing vector fields
of /. The four independent conformal Killing vector
fields can be obtained by projecting any four constant
vector fields of the Minkowski space into /.

Since D*E , =0=1D"B_, on M, these equations are
satisfied also by the limit fields on 2. Let L% be any of
the vector fields K¢ or £¢, Then the integrals ¢ E,, I* dS®
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and ¢ B, L°dS* are insensitive to which cross section of
P is used for the integration, since I?(E,, L%) =0
=D°(B,, L%). At first sight, then, there would appear to
be twenty quantities. Actually, however, ten of these
vanish. Since B, is of higher order in § than E ,, the
fourth field equation above yields D E,, =0. From this
one can show!! that

$ E, K°dS? = — 2¢D (E'“D? Km)as, ,

and, since the integration surface is compact, this
vanishes by virtue of Stokes’ theorem. Now examine
once again the fourth field equation above. Because
B,, is of order 3%, it is ¥-?B,, which has a non-zero
limit at 2. Since n%3,=-7%3,, the term / B, is asymp-
totically equal to ~ 2§, B,,, and hence

B, =-3"%,“DE

¢ da*

Although the order ¥ ° part of E , is curl-free, the order
5% part serves as a symmetric tensor potential for

B,,. (It is assumed that the fields are sufficiently
smooth at  that the 5 * parts are differentiable.) De-
noting the symmetric potential by «,,, Stokes’ theorem
can be invoked to show that ¢ B , £%dS® vanishes:

gsBab &adSb = 9 (EDCchKda)EudSb = ¢ Dc (Ede iaxda)dsb ’
There remain, therefore, the integrals
OF , £%dS® and ¢B, K*dS.

The first integral is a linear mapping from constant
vector fields of the embedding Minkowski space to the
real numbers, and, as such, is a candidate for the
definition of energy—momentum. If £ is the constant
vector field whose projection is ¢, then the energy—
momentum P, acts on £ according to

Pai=$E, £2dS’.

The second integral maps Lorentz rotational Killing
vector fields linearly to the reals, as does an angular
momentum tensor in Minkowski space. Since any Killing
vector field K of the hyperboloid can be expressed in
terms of a pair of constant vector fields of the embedd-
ing space by K¢ :e‘”’cgbﬁc, the angular momentum can

be represented as a skew tensor M ,:

M TP 1= §B, 2% 1,dS°.

The origin dependence of this angular momentum inte-
gral is contained in its dependence on the particular
hyperboloid foliation chosen. A foliation centered on a
point ¥ will produce a different angular momentum
tensor than a foliation centered on x. Under a change
of center point, the unit normal is affected asymptot-
ically according to 7% =»* +73 4. Here ¢ is a tangential
vector field which can be described this way: The
change of center point in M defines a vector Iﬂ:}” -
which can be regarded as a constant vector field on
M. Its projection ¢* into the unit hyperboloid identifies
a vector field on 2, and, by Lie dragging along the
original normal congruence, a vector field in a neigh-
borhood of /. The change in foliation and unit normal
causes a change in the magnetic curvature:

B ek d - m
Bab—n c cabd” ~Bab EE(aE

Then

Hhn
pImn¥ *
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Mab ga.,’,‘l'b — @Babeacd ‘Ecn,jdsb
=M, B + E7E, . A E n,dSP.

Now examine this final integral. Suppose J“ is time~
like and the integration is carried out over the unit
sphere section of  orthogonal to ¢¢. Then dS?< y* and
so only the integral

L $Epe,  €ootnE 0, dSP = 5 (B - BLe) £ n,dS°

survives. This is equal to 3 (P 7,7 - P,77, ). The
angular momentum dependence on foliation is therefore
of the familar form:

My, =M, +P.T,.

(No generality was lost by assuming 7 to be timelike
since one can choose a timelike basis for constant
vector fields in Minkowski space.)

The asymptotic linearized gravitational field in this
way gives rise to quantities which have the properties
of energy~momentum and angular momentum. Cal-
culating these quantities for simple examples yields the
expected answers. The energy—momentum of the Kerr
metric (linearized) is a future-oriented timelike vector
P, of norm m, and the angular momentum tensor is
orthogonal to a plane containing P, and has magnitude
ma. Here m and a are the familiar parameters appear-
ing in the Kerr metric.

In summary, then, a linearized gravitational field of
a bounded system induces on /2 a tensor field E,, from
which one calculates the energy—momentum of the
field. Because the field B,, is required to fall off faster
than E_,, its limit at 2 is foliation-dependent. Restrict-
ing consideration to hyperboloid foliations centered on
points of M, one obtains for each foliation an angular
momentum tensor. Changing the foliation center point
causes the angular momentum to transform as an
angular momentum tensor should under change of
origin.

3. ASYMPTOTICALLY FLAT SPACETIMES

In order to qualify as being asymptotically flat, a
spacetime (/) ,gab) should have some properties in com-
mon with Minkowski space (M,nab) asymptotically. In
particular, there should exist a manifold with boundary,
M=MIP, with P *RRXS? and a scalar field I on some
neighborhood /Jj, of P, with ¥ =0 on / and § >0 on
My =ity —p. The ¥ -foliation should resemble the
hyperboloid foliations in Minkowski space in the follow-
ing sense. On/}j, there should be a continuous tensor-
field which agrees with 3%n , on /), and is the unit
hyperboloid metric Puy on /7, The extrinsic curvature of
the foliation should be such that 3 K , has the limit - p_,
at /. It is assumed, moreover, that the curves ortho-
gonal to the ¥ -foliation are the restrictions of a con-
gruence on /ﬁ* which meets ) transversely.

If these conditions are satisfied, then one can display
a flat metric i, on/j, which is an asymptote of the
spacetime metric. Let p,, be the tangential tensor field
on /}—]* obtained by Lie dragging the unit hyperboloid
metric from /7 along the orthogonal congruence. Then
the flat metric is
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T)ab == 2-4(aa2)ab2 +Z}-2pab *

The spacetime metric g, is asymptotic to n,, in the
sense that the two tensor fields, when decomposed into
tangential fields, have the same limits at /. By con-
struction, both metrics give the same congruence
orthogonal to the § -foliation. The tangential part of
either metric, when multiplied by %2, has the unit
hyperboloid metric p,, as limit at /. To see that the
normal parts of the metrics also agree at /7, one notes
that, for the flat metric, the unit normal satisfies

% "*n% 3 =-1. From the assumptions that 3 %n,, —p .
and K, — - p,,, it is not difficult to verify that §,-*n?3,
Xy — -1 for the unit normal of the nonflat metric as
well,

This flat “background” metric facilitates comparison
of conventional ADM formalism with the /2 -boundary
description of infinity. Also, if one knows a suitable
flat “packground” metric for a spacetime, the construc-
tion of the P -boundary is straightforward: the § -folia-
tion may be taken to be one of the hyperboloid foliations
of the flat metric.

It is important that the boundary /°, when it exists,
be unambiguous. Of course, a spacetime may have
more than one asymptotic region. (This occurs for ex-
ample in the Schwarzschild—Kruskal spacetime which
has two asymptotic regions joined by the Einstein—
Rosen bridge.) It is presumably the case, however, that,
for any single asymptotic spacetime region/}f,, there
is at most one C! manifold with boundary /}j, which
satisfies the conditions above. This conjecture seems
very likely to be true.

In order for the energy—momentum of the spacetime
to be well defined in terms of the asymptotic geometry,
it is necessary that the scalar field Y can be chosen so
that £ is of order 3 °, where E,, =n°C ,,»® and »* is
the unit vector field normal to the §, ~foliation. The ex-
pression for the energy—momentum is formally iden-
tical to the one in linearized theory.

The spacetime must satisfy slightly stronger asymp-
totic conditions if angular momentum is to be well de-
fined. It must be possible to choose ¥ so that £, is of
order }3, B,, is of order %, and Y K, is differentiable
at /. The angular momentum integral is then formally
the same as in the linearized theory. In contrast to the
linearized case, however, the ¥ -foliation cannot be
chosen to be exactly a family of hyperboloids. If ¥ is a
scalar field satisfying the asymptotic conditions, then
so is i if y=3 + /%2, where fis constant along the con-
gruence orthogonal to ¥ -leaves and = indicates that
higher order terms may also be present. Rather than a
four-parameter family of allowed foliations as in
Minkowski space, the allowed refoliations now depend
on an arbitrary function on /2. The limit of B,,, and
hence also the angular momentum tensor M, , varies
with the function f. Is there a way to restrict further
the asymptotic foliations so that one obtains a suitable
four-parameter family of angular momentum tensors?
Ashtekar!? has suggested such a method. One notices
that, since B,, =0 to order 33, D K,, =0 to order 33,
This implies that the trace-free part of K, (which is of
order Y2 or higher) is derived from a scalar field'®:
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K, = Danf+ trace terms.

Under a refoliation § 5 =% + 32, the trace-free part
of K, changes by D D,f, so one can always choose a
foliation to make the trace-free part of K , vanish to
order Y2, The allowed refoliations preserving this con-
dition are then of the form y =y + a3 2, where a is one
of a four-parameter family of scalar fields on /° ob-
tained as the divergence of a conformal Killing vector
field on /. To the relevant order, these restricted
refoliations are the same at /2 as the refoliations by
change of center point in Minkowski space. One obtains,
then, a four-parameter family of angular momentum
tensors with the familiar transformation behavior. The
property that K , be pure trace to order %2 mimics the
hyperboloid foliations of Minkowski space for which K,
is exactly proportional to the 3-metric. It is for this
reason that the Ashtekar method is natural.

In linearized theory, by virtue of E , being curl-free
and B, being the curl of a potential, ten conserved in-
tegrals vanished. Do those same formal quantities
vanish for asymptotically flat spacetimes as well?

The integrals ¢E ,K°dS® vanish as before provided

Dy, E,;,=0, and this will hold if B, is of order 3* and
K,, is pure trace to order 3 °. In other words, when
angular momentum is well defined, then the electric
curvature limit gives only energy—momentum. The
argument that $B , £2dS® vanishes in linearized theory
used the fact that B, was the curl of a symmetric
tensor. Using the relation between magnetic curvature
and extrinsic curvature, B, =¢ D K, , it is seen that
the 3 ° part of K, is a potential for the tensor B, which
is of order 3 *. Provided 3 K , is twice differentiable at
P, therefore, the potential exists and those four con-
served quantities vanish.

In summary, there are several distinct degrees of
asymptotic flatness which may be usefully identified.
A spacetime may admit the boundary © and asymptotic
metric 7, but fail to have well-defined energy-mo-
mentum and angular momentum. Under more restric-
tive conditions the energy—momentum exists but not
necessarily the angular momentum, Still stronger con-
ditions are needed to have both energy—momentum and
angular momentum exist.
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The Palatini method of variation is compared with the Hilbert method for symmetric metrics and affine
connections. It is found that the two methods are in general inequivalent. The Hilbert method is

recommended as being more general.

1. INTRODUCTION

The use and the range of the Palatini method of vari-
ation and its equivalence to the Hilbert action principle
has been discussed in the literature.!'~* However, re-
cently published work* shows that a reexamination of
this method within the context of general relativity is
necessary.

The Palatini method of variation® requires the action
integral

I= [ L pndx 1)

to be stationary under arbitrary independent variations
of the (symmetric) metric g;, and the (symmetric)
connection T%,. The L in Eq. (1) is defined by

geom
L geom = ‘/__gBy (2)

where B is a curvature scalar of the symmetric connec-
tion T'!,,. Two sets of field equations result. The first
set reduces to the geometric identity (metricity condi-
tion)

Vgi;=0 (3)

which forces I'! , ={!,}. The second set is the Einstein
vacuum field equations when (3) is taken into account.

The Hilbert action principle is another method for de-
riving the Einstein vacuum field equations. In this meth-
od one assumes the connection to be the Levi-Civita
one, i.e., I'\,, ={i | and takes the unique L =,- gk,
where R is the curvature scalar of the Levi-Civita
connection. Variation of this action yields one set of
field equations which is the Einstein vacuum field equa-
tions. Equivalently, instead of considering I'f , ={,} one
introduces Lagrange multipliers and considers the «a
priori assumption I'! ), ={i{ ! as a constraint?, i.e., one
redefines the Lagrangian to be

L@ Ty M) ==g B+ AT, - {4}, (4)

where B is the a curvature scalar of a general connec-
tion.

It has been pointed out®® that the results of these two
methods of variation are equivalent for the Lagrangian

LmatterEV_gB+L¢’ (5)

where L,{(g, ¢,3¢) is the Lagrangian of some tensor
fields ¢ (indices suppressed) which does not contain de-

a)Correspondence address: 16, Admitou Street, Agios
Ierotheos, Peristeri, Athens, Greece.
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rivatives of the metric. B is the curvature scalar of a
symmetric affine connection.

However, these two methods are fundamentally dif-
ferent. The main difference lies in the way they treat

the a priori assumption(s)
re,= I (6a)

(6b)

ki

8ij |lz =0.
The Palatini method assumes the first as a constraint
(i.e., 61"§k :bl“,f;j) and shows that the second is trivially
satisfied, so to speak, an unnecessary selection rule.
However, in generalizations of the Palatini method, e.g.
in the derivation of the field equations in the Einstein—
Cartan theory, " the role of (6b) as a selection rule is
clearly not trivial. The Hilbert action principle treats
both (6a) and (6b) as constraints either by assuming
ri,= ;k} or by introducing Lagrange multipliers and
adding the term

A = (5D
to the Lagrangian. We will use the term Hilbert for the

a priori assumptions and the term Hilbert—Lagrange
multiplier for the latter. They are obviously equivalent.

In the following we show that:

(I) The Palatinin method and the Hilbert action princi-
ple are equivalent for empty space no matter which
curvature scalar of T is taken.

(II) When matter is present, the two methods are not
in general equivalent.® More precisely, for the Palatini
method to produce the Einstein field equations, we re-
quire that L, does not contain covariant derivatives,
The Hilbert action principle allows the presence of
covariant derivatives. Also, the Palatini method does
not yield field equations consistent with the metricity
condition (6b) when L, contains derivatives with respect
to the symmetric affine connection I‘jk whereas the
Hilbert method does.

2. THE LAGRANGIAN L goom

If we exclude the possibility of a nonsymmetric metric
tensor, g,,, one can easily show that the components of
a general linear symmetric connection I‘}k are given by

rf’k = {j‘k}_ %g“sz’ (7
where
B =&iwt &1~ Lrin (8)

with “ |” denoting covariant derivatives. The curvature
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tensor of I'Y, is defined as usual by
Bl =23, 1,7 + 20, T, ©)
One proves easily that

Brrjk:zérljoskl[(ln‘/__g—)|r];s (10)

(not sum over 7)., Thus

By =— B, ifandonly if g, (11)
So, in general one has three Ricci tensors

By=8,,, B',=B", B',=B/f, (12)
and one curvature scalar

B=g"*B,, B,=g"B",=-B. (13)

The third possibility was not considered by Schrédinger.®

3. THE PALATINI METHOD
Let us assume the Lagrangian of the geometry to be

Varying this by the Palatini method, we find the follow
ing sets of field equations:

Buj-38,8=0, (15)

(ij)

lda]gb)d+ g!(bGC)gkiA gj(béi)gsanls:()’ (16)
with ( ) denoting symmetrization and [ ] antisymmetriza-
tion. Equation (16) can be rewritten as
[ 6b6c6k+ 16k6b6k + 16bﬁc§k+ 15 (cgb)k"g,r

i1"&7a a 17 a”j’i
—EgngSJ a]g lk:O“ (17)

This equation appears to be different than the one
usually found in textbooks [see Ref. 5, Eq. (21.25)]. In
Appendix A we show that Eq. (17) which is a system of
40 linear simultanecus equations in the 40 unknowns
g°%,.=0, that is, (6b). Thus Egs. (15) reduce to the
standard Einstein vacuum field equations.

Let us assume now that there are matter fields pres-
ent and let the Lagrangian be

Leomt Ly, (18)

Lmatter = {geom

where L,{g,9g;T,3T; ¢,3¢) is the Lagrangian of the
matter fields, ¢, and L is defined in Eq. (14). If

geom

we define
J— _9oL,
—- gk, T”:ag.-j (19)
— w_ OL
— dh= e 20
\/ gk2 ML a F’jk ( )
and vary the L_,,,.. by the Palatini method, we obtain

the following sets of field equations:

B(ij)-%gngZK T (21)
(g%ag;i02 - g%%g;,0k + 5RO20% + 205550% — 26%626°

- 858k gt = KM, (22)
5 =0 (23)
&

Equation (22) has a unique solution (because the
corresponding homogeneous system has a unique solu-
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tion) which is not zero unless, and only unless,
M, =0, (24)

i.e., when L, does not contain any covariant deriva-
tives. Therefore, for nonempty space—times the
Palatini method does not yield field equations which
are consistent with the metricity condition (6b). In
conclusion, a necessary and sufficient condition that the
Palatini method of variation applied to L give the
Einstein field equations is that 47,2 =0,

matter

4. PALATINI-HILBERT

We look now at the Hilbert action principle and com-
pare it with the Palatini method. The Hilbert Principle
gives identical results to a Lagrange multiplier ap-
proach, ® We introduce the Lagrange multipliers A %

and redefine the Lagrangian L_,,,., as follows:

L’matter(g! ag; A; r; ¢’ a(b) = Lmatter + Aabc(rabc - {gc})5
(25)

where A=A °, Independent variations of the fields
A, ¢, g, T give respectively

rt h:{j‘h}, (26)
6L
T{f 0, (27)

Ryy— 4 @R =K, Ty + 1/ [ET)A Mg, .6, m}

- (1/2TgDIAF (07 (08,05

+ 87 (084110% — £uta80118 V5 (28)
Ape =K, M, (29)

where T,,, M are defined in (19) and (20), respect-
ively. We look for the necessary and sufficient condi-
tions that these equations reduce to the Einstein field
equations; but not necessarily the vacuum. Choose co-
ordinate conditions g;; ,=0. Then Eq. (28) reduces to

Gab’:' T - _“J’gabR

=K T~ 1/2TgNls " (a81a07 T 0783105
— Zea8p i8IV, o (30)
Taking into account Eq. (29) this becomes
Gopy =K T,, — (K,/2[gDM,,c +M,,° - M, ] .
Hence, we conclude that:

A necessary and sufficient condition that the Hilbert
action principle applied to L] ,,.. give the Einstein field
equations is that

(Mabc +1Mbac - Mcab); c™ 0.

We see that this condition is weaker than the corre-
sponding condition of the Palatini method. We conclude
that, in general, the two methods are not eqguivalent but
the Hilbert action principle is more general than the
Palatini method. More precisely they are equivalent
only when the Lagrange multipliers A =K,M %
vanish, %2 a well-known result, Besides the fact that
the Hilbert action principle is more general, it is also
more useful because it produces field equations for any
kind of fields, which are consistent with the a priori
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assumed Riemannian (or even more general) structure(s)
of space—time.

Considering these results and also the results of the
previous work done on the Palatini method, we suggest
that, perhaps, this method should be abandoned in fa-
vor of the Hilbert action principle (with or without
Lagrange multipliers).
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APPENDIX

In this appendix we show that (17) has the unique solu-
tion g% . =0. Choose a coordinate system in which the
metric tensor g, reduces to its diagonal form, i.e.,n,,
where 7., is the Minkowski metric. Then (17) reads

(- 68050™ + 5 65620™ + £ 625567
+46,0"™n, - 71"611:;5;"]Atim= 0,

where A% = g% =A%, We consider the following cases.

(A1)

Case l:a#b #¢
The system (A1) reduces to

At =0, (A2)
Casell:a=b+#c
The system (A1) reduces to
- Ab 3 AmC +Lnbmp, At =0, (A3)

Caselll:a=c#»b

The system reduces to Case II because of the sym-
metry A% =Ab

Case IV:a#b=c
The system (A1) reduces to
_Abba__%nbbntiAtiazoo (Ad)

Case V:a=b=c¢

557 J. Math. Phys., Vol. 19, No. 3, March 1978

The system (Al) reduces to

— A%, £ APm - Apbmn At _ Lpbhn At =0, (A5)
In (A4) we have the following subcases:
If b=0, then
A% _p At =0, (AB)
If b=k (k=1,2,3), then
A, A8, =0, 1)
Equation (A7) implies
A =0 and nq,,AY =0,
Substituting in (A6), we find A”,=0. These imply
AP =0 (A8)
and
4% =0, (A9)
Using Eq. (A9), Eq. (A3) reduces to — A¥, + Am¢
=0 (b+#c), which implies
Ave, =0 (A10)
and
Ame =0, (A11)
Finally, using Eqs. (A9) and (Al1l1), Eq. (A5) gives
AW, =0, (A12)

Equations (A2), (A8), (A10), and (A12) prove that the
solutions of the system (A1) are

A =0, QED
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Using spatially homogeneous dissipative perturbations, we derive a correlation inequality for states
satisfying the variational principle for infinitely extended quantum lattice systems.

1. INTRODUCTION

For finite quantum systems it is well known that the
Gibbs states can be characterized by the KMS property.
In Ref. 1 it is proved that this property persists in the
thermodynamic limit for a large class of systems. It is
therefore generally believed that this property is char-
acteristic for the equilibrium states of infinite systems.
To analyze this idea, different notions of stability have
been analyzed. In particular two essentially different
types of stability have been studied. On the one hand, it
has been proved?® that dynamical stability, supplemented
with cluster properties leads to KMS states. On the
other hand, we have the notion of thermodynamic sta-
bility, as expressed by different variational principles
for the free energy. We distinguish the global thermo-
dynamical stability (GTS) and the local thermodynamical
stability (L'TS), which both have been proved to be
equivalent with KMS for quantum lattice systems, %4

The implication LTS implies KMS in Ref. 4 relies on
the derivation of correlation inequalities from LTS. One
shows then as in Ref. 5, that these inequalities imply
KMS. Also these inequalities follow from KMS® "¢ and
therefore they are equilibrium conditions.

The main result of this paper (Sec. 3) is to derive a
correlation inequality from GTS. The derivation in Ref.
4 from LTS was based on the use of local dissipative
perturbations with bounded generators of the Lindblad
type.® These local perturbations however are irrelevant
for considerations on intensive observables like energy
and entropy density. Therefore, we have to introduce
spatially homogeneous dissipative perturbations. These
are studied in Sec. 2, where we construct strongly-
continuous spatially homogeneous semigroups of com-
pletely positive maps as volume limits of local ones.
The physical idea behind these dissipative perturbations,
in contradistinction with automorphic perturbations, is
that the system can be looked upon as a subsystem in
interaction with a heat bath. The appropriate heat bath
is found by considering the dilation of the corresponding
dissipative evolutions.

Finally we introduce the following notations, borrowed
from Ref. 10. We consider the lattice set 2 (veIN*).
For each finite subset AC 2Z¥, N(A) denotes the number
of points in A. Denote by 4 the quasilocal algebra of a
spin lattice system; 4 is the closure of the union of all
local algebras 4,. Let 4, =V, A, be the algebra of
strictly local elements.

2 Aangesteld Navorser NFWO, Belgium.
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Furthermore let {r,, k¢ 2"} be the group of space
translation automorphisms on /4. For simplicity the
volume limits which we consider are taken in the sense
of increasing cubes.

2. TRANSLATION-INVARIANT SEMI-GROUPS

In this section we construct spatially homogeneous
semigroups by taking the Lindblad® form of the genera-
tor for local elements and by translating it all over the
lattice. For any element v <4, denote by / , the genera-
tor. Then we have

[, acA—[ (@=v*av - ;(v*va +av*v).

Theovem 2.1%: Let ve A,, then for any x< A, the

map ¥ from A, into A,

y(x)= 2 AN CIN (1)
=

is well defined and generates a spatially homogeneous
strongly continuous semigroup (e%),, , of completely
positive (CP) unity preserving transformations of 4,

Proof: Because of the local commutativity property of
the algebra, i.e., if AOA’ =8, then [A4,, A4']=0, the
series in (1) contains only a finite number of terms;
therefore y is well defined.

Furthermore, for x4 ,,,
vt | = 2NN o] 2 .

Indeed y(x) is a sum of at most N(A)N(A’) elements be-
longing to algebras A 4.y k€ 2.

By induction,
[yl = 2NN AN + N8
[N(AT) + (= DN o 1] > |

AN L= DP o |

< pnlon 2
n!2"N(A) 1

< mtlzen(a o [ Feso (L)

Hence for 0<¢<t,=[2eN{AP] v 1P ] the series

£ Pl
n=0 n!

converges and defines (e"*),, - It is also clear that
et :S;};IJ‘ exply,t), 0=t<li,
where

'VM(x):k E VLTk(v)(x)°

CMT 2
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By Ref. 9 exply,t) is 2 CP unity preserving transforma-
tion, hence ¢ shares this property on A,. Further as
Il exp (v, )l =1, et extends to 4 by continuity for 0= ¢
<t4

Removal of the condition on ¢ goes as follows: for all
t,,t, such that 0 < ¢, ¢, ¢, +1,<it, from the series ex-
pansion, exp(y(¢, +1,)]=exp(yt,)explyt,). For arbitrary
{20, choose Ne INsuch that ¢/N <{, and define ¢
=(e"/¥)¥, The strong continuity { ~ e follows
immediately.

3. CORRELATION INEQUALITY FROM GTS

As usual consider the lattice sites occupied by parti-
cles interacting through many-body potentials ¢ (X)c A 4,
X T2, We consider the interactions ¢ satisfying:

(i) $(X) is Hermitian;

(i) (T, $)X) = (X + &),

(iii) 1o =22 HpOI < oo,
oEx

translation invariance;

Let 3 be the set of these potentials. For any ¢ & /3 the
local Hamiltonians are given by: For AC2Z",

H ()= I ¢().
Definition 3.1: A spatially homogeneous state w on 4

satisfies the variational principle or is globally thermo-
dynamically stable (GTS) if it minimizes the expression

F@=wld,) - L s@)

B

where 8=1/¢T and
_ ¢ (X)

Ay = ogx NEX)?

which by (iii) is an element of 4 representing the energy
per lattice site; s{w) is the entropy density (see Ref. 11)

Lemma 3.2: With the notation used above, for any
state w on A4 satisfying Definition 3.1 ve4, and y as in
(1), we have

(ert—1)
t

lim w( A¢,> :}Hi‘n%vw(v*[Ho(F), v)).

t-0"

Proof: As ve A ,, there exists a AC Z¥, such that
veA 4. From the proof of Theorem 2.1,

Hy (@GN < 2NN 2 112l p GOl
Therefore,
lly P X)/ NI <l ¢ I 2N(M)f v 112,

0EXCuT
We can define

v =limy[ 2 o

0EXTM

(X)/NX)].

Because of the strong continuity of the semigroup ¢ — &**
(Theorem 2.1},

rt
lim (e -1) A

t-o0* t =74 °)°

Applying the state w,

nmw((fi't:i),%) —wl(4,)). @)

t=o*
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Using the spatial homogeneity of the state,

(A =Lww*Tde v]) + 3w (vt TA,], B
We note that for any local observable b=b*c4,,
lim [H,(T), b]= E [74,, 0] “

and that, if b, = chr 7,b, the following limit,
lim exp(irbp)cexp(-irby) for all cc4 and x e R,
T2

exists and defines a strongly continuous group of *auto-
morphisms @, of 4:'* By Ref, 13, Theorem 5, we have
slwea,)=s(w) for all A ¢ R,

As w is GTS, for all 2,
flwoa,)) =flw)=(woa,-w)4,)=0
and

&[?Mil— w2, A2 0.

R
As this remains true with b replaced by - b we obtain

@@[7d, Ay =0.

Using the space homogeneity of w and the above remark,
we get for all be A,

1F'1_n;ruw([b,HA])=0. (5)

This relation expresses the time invariance of the state.
Combining Egs. (2)—(5) we get the lemma, -

Lemma 3.3: Let p be any density matrix on (C"), w the
corresponding state w(*)=Trp and v, €A(C"), i=1,...,k,
For Yzzkiﬂlui;

- wlylnp)) = w(zvz“v.)ln—(z'}ﬁ’l};fl
¢ (Ztylvt )
Proof: As this lemma is a slight generalization of
Ref. 4, Lemma 6, the proof goes along the same lines
as in Ref. 4. =

Now we have the main theorem:
Theorem 3.4: For any interaction ¢ ¢/ and state w

satisfying GTS (Definition 3.1 and for all »;, i=1,...,n,
in A4,, the following inequality holds:

Blim, wQvHH, (D), v,)
zw 3 o ln u)(E iz lv'1‘)
=1 w

Proof: For notational convenience we restrict ourself
to a single local observable v(z=1). The generalization
to arbitrary »n is immediate. The idea of the proof con-
sists in the claculation of the following limit,

sf=lim L@ €)= f(@)
t-ot t ?

y as in (1), which is nonnegative by the assumption on
W
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We note that
. (et = 1)
6f=%:gl} w(——t— Ay)-6s(w)=0,

where

slwee™) - s(w)

és(w)zﬁrg} ;

By Lemma 3.3
of= llri_n;vw(v*[Ha(F),v])—(BS(w)?0- (6)

Now we compute 5s{w). Consider (I'(n)), an increasing
absorbing set of cubes for Z¥. For » large enough, con-
sider the set.

L={kc?|t,vcAr,}andy,= Z} L

Let w, be the restriction of w toAr(ﬂ) with density
matrix p,, and &S, s R*, the periodic extension on A
of w,°exp(y,s). The density matrix of the state
w,°exply,s) is then given by exp(y¥s)p, where

yEC)= 2T 1% = S [T, ¢,
®E1n

One checks that

*—lim@l=w- e,

o
Using the upper semicontinuity of the entropy density
on periodic states,*

((U) zlimlim M

t=-0"n+ e

s{w, o exp(y, 1)) - S(w,)

=limlim IN(T () ,

£20+ oo

where S(w,)=-Trplogp,.
By Ref. 4, formula 2,13,

N -1
bs(w)>1im lim —mr sy
t
x [dsw,°exply,s){y,In[exp(is)p, ]}
0

By Lemma 3.3.,

w, 2 exp(r,8) Qe T(*0))
N(T@)

T
Os(w)> Lim Lim - Jds

w, 0 exp(,$) 2 e, T, (v*v)]

X1ln .
W, exp(yns)[EkEInTk(vv*)]

We note that

U)n(')/" [Z;kE I"Tk(v*v)])
N(T'(n))

lim

new

R 1
=’1,1_r2 N(T(n) w@”E’nTkE’Eln'fnLTz” (w*v))
=lim NU,)

o N (n w(ZlCI A Lr

)(v*v))

=w(7(v*v)).
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Analogously this can be done for any power of y. Be-
cause v*v is strictly local, we can use the series ex-
pansion as in Theorem 2.1., to derive

Lim ©@n° €XP0,9) [ 2ipe 7, (070)]

s N(I" n)) =w(€ (U U))’

uniformly in s€ [0,¢] for ¢ small enough.
Therefore,

bs(w)= w(v*v)lnm.
w(vv¥)

M

Combining (6) and (7) we get the proof. »

We note that the inequality of Theorem 3.4 is a gen-
eralization to n observables v;, i=1,...,n, of the
corresponding inequality which can be found in Refs. 4,
5, and 8, The same kind of generalization of the
Roepstorff inequality, Ref, 7, Theorem IIl.1, can be
given and looks as follows,

2 ,,v)\w(Z} v*, v;] w(Z)

E,U‘v

where (v, v;). is the Duhamel two-point function, given

by
ef-1
(v;s Ui)~:w<vf o Yi)s
where

Hy;=lim [H(A), v;].
r-z
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The scalar wave equation of a tachyon is investigated in the background of Schwarzschild geometry. The
scalar field is split up into partial waves of all integral momentum states and the space development of
each partial wave is studied as it approaches the singularity. The problem is mainly considered in the light
of the assumption that the tachyon mass-parameter is comparable to the mass of a atomic particle while
the black hole mass is comparable to that of an average star. The reflection and transmission properties of
these partial waves at the effective potential barrier, arising partly from their angular momentum and
partly from the curvature of space-time are discussed. It is found that in the radial case (/ =0) the
criteria for the bounce are different from the purely classical behavior of spacelike geodetic trajectories.

1. INTRODUCTION

In the recent years several authors have considered
the interaction of tachyons with gravitation, Narlikar
and Sudarshan! have showed that a primordial tachyon
in a big bang universe is eventually reflected at a time
barrier. Dhurandhar? has considered the propagation
of tachyons inside a white hole. Honig et al. % and
Narlikar and Dhurandhar? have discussed the classical
geodetic trajectories of these particles in Schwarzschild
space—time., They have shown that, the curvature of
space—time gives rise to a potential barrier from which
the low energy tachyons, i.e., those with energy per
unit mass parameter’ less than the maximum of the po-
tential barrier, are reflected. Such tachyons re-emerge
out of the event horizon at »=2m of the extended
Schwarzschild space—time, while the high energy ones
fall into the singularity. It is quite intriguing to ob-
serve that, these faster than light particles rob the
r =2m surface of its property as a one way membrane
of information propagation. Also the gravitational field
of the central mass tends to oppose the infall of the
tachyon rather than abet it, while the angular momen-
tum tends to lower this potential barrier. These effects
are opposite to those expected for tardiyons.

The above papers deal with the problem classically,
that is, the tachyons are classical particles having
definite position and momentum at a given point of
space—time. In the present paper we propose to analyze
the problem within a semiclassical frame work, in the
sense that, the tachyons are treated as quantum wave-
packets, but the gravitational field of the black hole is
unquantized. This type of approach has already yielded
interesting properties of quantum effects on ordinary
matter near black holes as shown by the pioneering
work of Hawking.® It would be interesting to find out
whether the quantum tachyons encounter a potential
barrier and if so, whether they tunnel through it. To
study the tunnelling effect we shall extensively make
use of the WKB method.

2. KLEIN-GORDON EQUATION FOR TACHYONS

One of the basic assumptions we make here is that the
Schwarzschild geometry is not perturbed significantly
by the tachyon. The assumption is not unjustified, if the
total tachyon mass parameter is negligible compared
to the mass of the black hole, responsible for the back-
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ground Schwarzschild geometry. Although tachyons
still remain to be detected in a “typical” case we will
assume the mass parameter of the tachyon comparable
to the mass of an electron. The mass of the black hole
will be taken to be order of the mass of the sun Mo.

It is possible to determine the spin of a tachyon from
the considerations of the unitary irreducible represen-
tations of the inhomogeneous Lorentz group. These
representations are either spinless or infinite dimen-
sional, Following Narlikar and Sudarshan,! we treat
here the simplest case of the spinless tachyon. The
tachyon wavefunction in empty space then satisfies the
Klein—Gordon equation,

C2 - MPy=0, Y

in which, we have chosen units with ¢ =1, F=1.
¥(R, 6, ¢, 1) is the scalar wavefunction of the tachyon,
M, is the mass parameter of the tachyon, the operator

3 (= a)
“‘/—%axj<_gg ot ’

where g;; is the metric tensor of Schwarzschild space—
time with the following nonzero components:

2MG 2MG\ -t
gw= \1-—F7"), gu=-\1-—p—)

gn=-R}, gs=-R’sin'e.

DZ

M is the mass of the black hole and G is the gravita-
tional constant.

The negative sign in Eq. (1) arises because the
tachyon has imaginary rest mass iM; and this can be
immediately seen to be consgistent with the fact that
the wavepackets of the solutions to this equation have
group velocities greater than that of light. The plane
wave solutions to (1) are of the form exp(iZ*7 - iwt)
with # and w satisfying the relation #* - w® = M¢. There-
fore, the group velocity dw/dk=#k/w is greater than
unity.

The curvature of space—time is incorporated in the
1% operator and this gives rise to an effective potential
which the tachyonic waves encounter,

One may remark here that, when the sign of M¢ in
(1) is positive, that is, in the case of ordinary particles,
there do not exist physically acceptable static solutions
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of the Klein—Gordon equation in Schwarzschild space—
time, but in our case such solutions do exist (Price’).
They correspond to zero energy tachyons.

Expansion of (1) leads to the equation

%y 1 ( 2MG> 3 [2 zwc> a;b}
AR \"r ) F\U""% )=
1 2MG\ 1 2 [, .8y
R (l' R )sinf) 30 <Sm95§>
2MG
- <1— > MEp=0, (2)

where due to azimuthal symmetry of the problem about
0 =0, the wavefunction is independent of @.

$ can be expanded in terms of a complete set of
eigenfunctions of the angular momentum operator, that
is, solutions of the form [¢;(R)/R]P,(cos8). Setting
b=770l¢;(R)/R]P,(cosf) and substituting in (2), we get
a partial differential equation for #,;(R,#), namely,

Bty 1 2‘11(,) 3 [2< 211(;) 2 (zp_]
arE " R(l R ) BEN-"% ) \&
2MG\ 10 +1 2MG
(- B0 - -2 o,

To separate out the # dependence of ¢,(R,?) and since
the calculations are going to be linear throughout, we
can proceed by Fourier analysis.

Writing
$Ry )= [T AQ) ]

and substituting in (3) gives an ordinary differential
equation for a typical Fourier component,

AMG ddy RE [2 ( 2MG> )
-5 )M

(R) exp(- i) d2

L AN o AU
dR o RR=23G) dR ' (R = 2MG)?

2MG 2MG l(l +1) 2MG
- R2 - R J)l =0.

R? R
In Eq. (4) the coefficient of ¥7 consists of two parts:

0

@)

(i) the term involving ©* corresponds to the energy
or frequency of the partial wave;

(i1) the other three terms constitute the effective
potential barrier, which the Fourier component % has
to surmount; the first two of which arise due to the
curvature of space—time, while the last term repre-
sents the “centrifugal barrier.”

It is fruitful at this juncture to use dimensionless
units, by setting » =RMy, m =GMM,, w=0/M, Equa-
tion (4) then takes the form

ey 2in ayy i s ¥ —=2m
Iy y—-2m
ar + v(r=2m) dr r—2m)* ]
- +
- 2”7(77’4 2m) _ l(lyg ), (V—Zm)) 7 =0. (5)

Equation (5) cannot be solved in terms of any known
functions, but its application to the typical situation
cited before furnishes a simpler equation. For effecting
the approximation, it is necessary to get an idea of the
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magnitude of the various terms appearing in Eq. (5). If
the mass of the black hole M~ My=2x10% gm where
M is the mass of the sun, and if the mass parameter
of the tachyon My~ m,=9x%10"2% gm is the mass of the
electron, then

— QJ_LM_Q 3,84 X 1015’
c
= ng"c =(R in cm) (2.56%x10%m"1),

One immediately sees that the coefficient of dy/dr is
very small everywhere, except inside the extremely
thin shell |# - 2m!<¢ where ¢ is of the order of unity in
dimensionless units. Also the term 2m(r — 2m)/+* is
negligible everywhere outside a small sphere centered
at the singularity »=0. We can neglect these terms
provided we do not enter these exceptional regions,
Then Eq. (5) simplifies to the form

a4y ¥ -2
read o= <“’2 r1- 2 WD m‘)> b =o.
(6)

3. THE RADIALLY INFALLING TACHYON

This case does not just deal with the I =0 partial
wave, but applies also to eigenfunctions of higher
angular momentum states, provided the centrifugal
term I{I + 1)(» — 2m)/¥® for those eigenfunctions is small
compared to the other terms in the parenthesis. To
get an idea of the value of I for which this term is
negligible, we look at it in more detail. This term is
of the order of unity, when ! is roughly of the order of

, that is, 7~10%, say. One need not be surprised by
this large value of [, because the tachyon is at an
astronomical distance from » =0 and consequently its
angular momentum is several magnitudes higher than
the angular momenta encountered in the atomic en-
counters. Here 7510 is sufficient to ensure the small-
ness of the term in the region, where (6) is valid, One
neglects this term and obtains the differential equation

d*¢ 7 2m _
o el 1) oo, m

where ¢ is one of the eigenfunctions which fall into this
category.

At large distances from the black hole, i.e., for
¥>>2m, Eq. (1) becomes
dz(b 2, (8)
W +Fk @ —0,
where #* =1+ w? and % is the wavenumber of the wave at

infinity. The solutions of (8) are of the form exp(+ 7k7).

A. A crude approximation

In the vicinity of the black hole, however, the curva-
fure effects come into picture. One can then obtain a
solution of (7) in the neighborhood of a given point and
determine the form of the solution, that is, whether the
solution is oscillatory or damped.
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Setting =7, +¢=2mp +¢, say, where p=0(1), one
obtains

2 2
%Zd-)“l‘(?)—fT)f(kz—%) ¢ =0. 9)

From the definition of ¥*, k*> 1 and so in the region
r>2m, corresponding to p>1, the solution is always
oscillatory. Inside the Schwarzschild radius the coef-
ficient of ¢ is positive or negative according as p> 1/1?
or p<1/F. Accordingly the solution is oscillatory if
»> 7, and damped if v < v, where »; =2m/k =2mp; (say).

One may remark here that a similar result was first
obtained by Raychaudhuri® by purely classical consid-
erations. 2m/k* was the point of reflection of the classi-
cal tachyon, the k in this result represented the mo-
mentum per unit mass parameter of the tachyon,
Whereas quantum mechanically there are limitations to
this result. For, if # becomes arbitrarily large, »;
decreases without bound and falls inside the region,
where Eq. (7) is invalid, as the term 2m(r - 2m/#* can
no longer be neglected from Eq. (5) to obtain (6) or (7).
In order that 7 lies outside the small sphere (the radius
of which is about 107 in dimensionless units) centered
at the origin, % should be less than 10, Then the result
of the reflection of the tachyon at 2m/#® is also valid
in the quantum mechanical case.

B. Application of the WKB method

The situation in the vicinity of » = therefore de-
serves a more accurate analysis than given above. A
solution accurate enough for the present purpose can
be obtained by the Wentzel—Kramers—Brillouin (WKB)
method described below. Setting

Py = (2}%—7—)5 <132 - 2—;?) , (10)
we have
2
%?+ﬁ00¢=& (11)

The solution of (11) can be approximated by

o) =a(¥)explti [ pdr), (12)

under the assumption that the effective potential is lin-
ear near #; and p’(v)/p*(r) <1, where the prime denotes
differentiation with respect to ». We shall first apply
the method to (7) to get the required solution and then
discuss the constraints on its validity.

A direct substitution of ¢(») in (11) leads to the deter-
mination of @ (¥) to be

a(r)=Ap/i), (13)

where A is an arbitrary constant. Setting » =2mp, + £
in (11) and retaining only the first order terms in ¢
we get

d¢ £ _
a7 +——————-,2m(1_p1) ¢ =0. (14)

Putting £ = - £/[2m(1 — py)*JV/? in (14), we get

dZ
Z$‘§¢=Q (15)
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This is the well-known Airy equation and has the solu-
tions A4(¢) and Bi(¢). For £>1,

1
A ()~ —— ¢1/4 -2:%/2/3
i) v 4 exp(-2£%/%/3),

1
Bi(g)~ = ¢/ 2£3/1/3).
(%) \/-W—Z exp(2£°/¢/3)
In the limit { < -1,

Ai(0)~ % (= O in@ (= ©)¥/? +1/4),

Bi(t)~ -};4— V4 cos@ (= )32 +1/4).

In the solution by the use of Airy functions two scales
of distances are involved, namely, the astronomical
scale [0(10%) dimensionless units] and the atomic scale
[0(1) dimensionless units]. The effective potential
varies over distances comparable to the astronomical
scale, while the Compton wavelength of the tachyon
measures with atomic length scale. A unit length of
parameter ¢, used in Eq. (15), can incorporate several
oscillations of the tachyon wavefunction, but is small
enough for the change in potential to occur approximate-
ly linearly. Equation (14) is obtained by an approxima-
tion carried out in the astronomical scale, while the
asymptotic formulas to its solutions are obtained per-
taining to the atomic scale.

For the application of asymptotic formulas the lower
bound for »; should be about 10°, greater than the one
required for (6) to be valid. This further restricts the
permitted range of k to less than 10°,

The extent of the region » < 7y is large enough to let
the solution Bi(¢) grow extremely large, hence it is
physically unacceptable. Therefore, we choose
o =Ai(L).

The WKB method is applied to the given problem by
writing (14) in the form

2
3—7?4—1‘)2(1*)(1):0,

where

Pr) = ﬂl_)z. =a’(y - ry) (say).

2m(1 - py
We have { =~ a{(»~7;), which yields
j;: p(r)dr=5(= £)*/? in the region »> 7,.
In view of the asymptotic form of Ai(¢) for £ << -1,
the solution in the region 7> 7; can be written as
Py =Ap1/t sin[frr pr)dr +n/4]. (16)
1
The Airy function provides the continuation of ¢,, into
the region » < #y corresponding to >0,
ba=B |V exptc [71]p)| ar, an
where B is a constant.
We immediately see from the asymptotic forms of

the Airy functions, for {>>1 and £ <-1, that A =2B,
and conclude that a total reflection of the wave occurs

S.V. Dhurandhar 563



at v =7,. The wave which penetrates the potential
barrier is heavily damped.

C. Test of validity of the WKB method

It is required to test whether p’(#)/p*(») <1 in the
vicinity of =7y, We have

P’ 1 p'lp)
)= 2 770) 1)

A straightforward calculation shows that

') 1-p 1 ( 1 2)_ 1
PP~ pt1/p- B 1-p p‘k 2 ° (19)
If % is not very large—say of the order of unity—

p'(0)/p*(p) is of the same order, so that p’(+)/p*(r) is
very small. Therefore, WKB is valid in this case.

For k> 1, p;=1/k*<1 and in the limit the simplified
expression p’{0)/p*(p) becomes

pe) _ 1 1 _kz) 20)
o) ~ ot /p -7 \2p .
Setting p=a/k* where a=0(1), we get p’(p)/p*(p) =bk®
where b =0(1) which yields,

P B
W ol (21)

With regard to the permitted range of £ discussed be-
fore, the ratio p’(r)/p*(r) is very small and WKB method
is valid,

D. Exact solution

It is possible to solve Eq. (7) exactly in terms of the
confluent hypergeometric function, We consider the
equation for » < 2m; the case for v > 2 is on similar
lines.

Putting x =2m ~ 7 in (1) gives
do . <k2 _ 2ma _ nln+1)
dx® x -

where @ =2F -1 and n(n +1) = - 4m*w?. Let ¢(x)
=x™ explikx) flx), and putting y = - 2ikx we get an
equation for f,

) =0, (22)

e

The solutions of (23) are F{n+1 +iom/k, 2n+2,y) and
F(-n+iom/k, —2n,y)y~ "3, The solutions of (22) are
correspondingly multiplied by ™! exp(ikx). The ap-
propriate combinations of these solutions describe the
incoming and the outgoing waves.

Though the above solution is exact, unfortunately it
provides little physical insight into the problem. It
seems difficult to extract relevant asymptotic informa-
tion from it.

E. High energy tachyonic waves

Very high energy partial waves (w~10°) penetrate to
the region very near singularity » £107 (say), so the
term 2m(r — 2m)/#* can no longer be neglected from
Eq. (5). But another approximation in (5) is possible
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for distances very close to » =0, that is, » can be
neglected compared to 2m. With this approximation,
(5) takes the form

d* id 7* 2 am?
R R R P R RN

where ¢ is one of the “radial” eigenfunctions. Setting
g=r42¢(r), (24) becomes

2
e (- g =0, 5)
where

2 2
V)= - T

We have

3 mZ 1/3
V;znax = E (7) . (26)

Therefore, if k>v3/2%/3n1/3  then the partial wave
with such high energy surmounts the effective potential
barrier and goes into the singularity., This result is
markedly different from the classical one, where re-
flection takes place for all energies of the radially
infalling tachyon.

4. TACHYON WITH ORBITAL ANGULAR MOMENTUM

In this case we require Eq. (6) in full. The value of
1 considered here is about 10*®, so that the centrifugal
term I(I +1)(» - 2m)/7" in (6) is comparable to the other
terms in the parentheses.

We shall now discuss the general behavior of the
wavefunction as the wave approaches the black hole
from infinity. For very large distances from the singu-
larity, the very large values of / come into the picture.
If »~100m and [ ~10'%, Eq. (6) reduces to

a2y ( z(z+1)> a_
E?” w2+1——?— ¥§ =0, 27
One may write (27) as
2
T 10145 =0 (28)
with

P =ut+1- D,

For a fixed w and /, and at a large distance from » =10,
when the value of » is sufficiently large, p2 (»)> 0 and
the Fourier component zp,“ is oscillatory. As the wave
approaches » =0, p*(») decreases, so that the oscilla-
tions slow down until finally p®(») becomes negative, and
the partial wave is damped out. It is also easy to see
that the partial waves with larger angular momenta die
out at a larger distance from the black hole, So if one
looks at the totality of all the partial waves of an inci-
dent wave with a fixed w, the partial waves with larger
angular momenta are damped ouf first, while the rest
of the partial waves proceed towards the black hole.

For comparatively smaller distances one can include
comparatively smaller values of I; {o be more precise,
if »~20m and 7~ 2m it is possible to treat a special case
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for low frequency waves. With this approximation equa-
tion (6) becomes

A (2 2m z(z+1)> o
WL+ w'+1- i A Py =0.

In the low energy limit, we see that the solution is
oscillatory if »> »,, where r,=m + [m? +1( +1)]V/2, A
parallel result was obtained by Narlikar and Dhurandhar?
for the classical tachyon.

(29)

When 7 is of the order of the Schwarzschild radius
Eg. (6) has to be treated in its full form and can be
written as

d*y] 7

P s o) (@ - V)3T =0, (30)

where

- o-2) (430

is the effective potential.

This potential is impenetrable for low frequency
waves, but is transparent to those of high frequency.

It is convenient, at this juncture, to use a length
variable of the astronomical scale. Putting »=2mp in
(30) but retaining the derivative in terms of », we have

dZ

‘J’Q+——,"z (W - Vo) ¢y =0 (31)
Wl (1-p) i : ?
with
1 L?

V3“”:(5‘1> (I’Ef)’

where
W+
Li=—pr -

The potential V(o) is of the same form, as obtained
in the classical case by Honig et al.,*® who discussed its
properties in full detail. Hence we shall be brief.

A. Comparison with classical case

The roots of V(p)=0 are at p==L and 1, and a maxi-
mum of the potential occurs at p=p,, lying between
p=1 and p=L, There is no minimum of potential, We
have p,,= (L' +3L)Y?— [* and lim, .. p,, =3. For L =1,
Vi(p) < 0 for all p. Hence the partial waves with L =1
do not see any potential barrier and proceed into the
singularity undamped.

There is, however, one difference which occurs in
our treatment as contrasted with the purely classical
treatment. In the classical case L can vary continuons-
ly from 0 to «; while this case L is a discrete varia-
ble; it takes only those values for which / is a non-
negative integer. Therefore, one gets a discrete series
of potential curves for the various values of 1.

If w?> V2(p,,), the partial wave does not encounter any
potential barrier, but when w®< V2(p,) an interesting
situation arises. The equation w? — V3(p) =0 has two
positive real roots, say p; and p, with Py > Prye Hence
one can anticipate qualitatively the general behavior of
the solution as follows:
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(i) For p> py,, 0y, the solution is going to be
oscillatory,

(ii) For p,, <p <py,, the solution is going to be
damped.

(iii) For p< Prys Py the solution is again going to be
oscillatory.

B. Application of the WKB method

We shall again apply the WKB method and later dis-
cuss its validity.

The outline of the method will be as follows:
{a) We divide the p axis into three regions:
1) p>py,

@) py,<p<pyy;,

(3) p<py,.

{b) We obtain approximate forms of the wavefunction
in the regions (1), (2), and (3) and match them at the
barriers with the aid of Airy functions.

Our next step is to find the form of the solution near
the potential barriers at Py and p;,. To this end, we set
r=2mp, + £, where p, represents either P1y» OF ppye
Then a Taylor expansion of the potential near p=p,
leads to the differential equation
(32)

d2y? £ < 21} 3L2> a
o 1+ =— - =0,
dg& " 2m(-p,) o, T/

Putting

3o 1 2Lt 3L -
ﬁvm + o -B'zl— and {=p¢,

we get the Airy equation,

d2 wQ

Q
w“—@bt =0,

Since there seems to be a possibility of the tachyon
tunneling across the potential barrier, one has to take
into consideration both the solutions A{(¢) and Bi(¢) of
the Airy equation, As was the situation in the radial
case, the parameter { has a length scale lying between
the astronomical and the atomic scale, So in the vicinity
of the potential barrier the Airy equation, together with
the asymptotic forms of its solutions, is valid.

(33)

What we are going to do henceforth has been sche-
matically represented in Fig, 1. We assume the wave-
function in region (3) to be

ps=ApV Pexp(-: frrzp(af) dv—in/4), r<ury, (34)
where p*(r) is the coefficient of ¥ in (30) and we have
set vy =2mp,; and v, =2mp,,. Since we are considering

a single angu‘lar momentum state at a time, no ambiguity
arises if we drop the suffix / from the variable ». An
extra phase factor of exp(—i7/4) has been added to
facilitate the matching of solutions across the barriers.
(34) represents a wave moving radially away from the
singularity »=0.

In the vicinity of »,, ¢3 has the approximation
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FIG. 1, Figure showing the region of validity of the WKB ap-
proximation and the Airy function approximation of the wave
function $(»). The WKB approximation is valid everywhere
except in the neighborhoods of 7; and 7,, the width of the
neighborhoods being given by | £ 1< 0(10).

P35~ A(= &)V exp[- i(3(- 0¥ 2 +7/4)]. (35)

The Airy functions provide the required connections
across the barrier. (35) shows that ¢; represents a
combination of the asymptotic forms of the Airy func-
tions (except for the constant factor V7 ) for £ <<1, Since
the Airy functions are well behaved at { =0, we can
continue the solutions into region (2) and obtain its
asymptotic form for £>1,

By ~ AV [exp(2£3/%/3) —1i exp(— 2£3/2/3)]. (36)

In view of this, in region (2) the wavefunction can be
written as

dy ) =Alp| 1 exp( [ |pldr) - zilexp(= [T [p|ar)] 37)
4] 4

for »> ;. Define T=exp(~ f:;lp ld»). Then (37) takes
the form

sun=alpl s (Lo (- [ plar)

—% exp (‘/J1 Ip’dr)) . (38)

By going through a similar procedure as followed
above, it is possible to obtain the wavefunction in region
(1) as

¢y (r) =Ap1/2 I:% sin([ pdr + %)

1
iT 7 T
- 5 cos (f pdr + Z)] . (39)
21

The solution is more revealing in the form

o) =20 {<Er1" +q) e <f, par+3)]
- <—717..4Z> exp [—i([’pd7+%>]}. (40)
i

The first term of (40) represents the reflected wave and
the second one represents the incident wave. The trans~
mitted wave is given by ¢5(r) in Eq. (34).
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C. Transmission and reflection coefficients

The transmission coefficient is computed by the
formula

transmission coefficient

_ lamplitude of transmitted wave |
| amplitude of incident wave|

T
T1-T%/4

=T if T<«1,

In the same approximation the reflection coefficient is
unity.

The computation of T requires the evaluation of the
integral in its definition,

7y ]
f ’/)’deme ! 1% (Vi(p) — M %ap (41)
n P1y P
unless Py =Dy the integral is large in the typical situa-
tion, because of the multiplying factor m. Therefore,
T is practically zero implying that total reflection oc-
curs at the potential barrier.

The case when Py, =py, does not carry much physical
significance, as it would be a rare coincidence for the
energy of the tachyonic wave to lie within such a small
range, but for the sake of completeness, it has been
treated in the Appendix.

D. Test of validity of the WKB approximation

The validity of the above procedure can be seen by
computing p’{(r)/p*(r). We have

') _ 1 p'lp)
W T 2m m

_ 1-p < 1 _p2+2sz—3L2>
T 2mptl Vi(p) - W T2 \1-p ~ 2p°(Vip) - %)/
(42)

The factor m occurring in the denominator of (42)
implies p’(r)/p*(r) <1, except when V(o) - w?* is small.
This is so if ¥ =y, or 7, or if two roots of the equation
V4(p) — w* =0 lie close together,

5. CONCLUDING REMARKS

The above gquantum mechanical analysis shows up
somewhat different results compared to the earlier dis-
cussions of classical tachyons. ®* In the classical case,
the identification of the regions I and III in the Kruskal
diagram led to the result that a radially infalling
tachyon is bounced by the black hole and emerges from
inside the event horizon (Narlikar and Dhurandhar?).
Here the quantum tachyon shows a similar behavior at
low energies. At high energies, however, it tunnels
through the potential barrier and hits the singularity.

This curious behavior has some resemblance to the
quantum effects on ordinary matter (tardiyons) near
black holes. As shown by Hawking® the quantum
mechanical tunnel effect allows the outward movement
of ordinary matter near black holes. The results
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presented here show a similar effect operating on
tachyons moving inwards.
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APPENDIX

We treat here the case when the two roots of V3(p)
— w? =0 lie close together. Near the maximum of the
potential, the potential curve can be approximated by a
small parabolic arc, Hence one can write the two roots

of Vz,(p) - w*=0as p,+eand p, - €. Then a Taylor ex-
pansion of the potential near the point p =p,, yields
V2(0,,) - Vi(p, £€) = €A%, (A1)
where
1 @V L?
A=z Lol —Z3op), (a2
2 A ., pp P )

We note that, as p,, <3 for all L, A*>0.

Our interest is to investigate whether there is a finite
probability for the tachyon to tunnel through the poten-
tial barrier and also to simultaneously determine how
far in the limit as € = 0 can we apply the WKB method
to achieve our end. The validity of WKB is determined
from the computation of p’(r)/p*(») at an intermediate
point p=p, + & with |6/<e. Taking 6 as the same order
as € and setting 8 =a¢ with a~0(1) and lal< 1, yields

?'(p, +8) _ 1 1 a 1-p,. 1

T m %
70, +0) " AFA-AT e T A= Ap, &
(A3)

Therefore, the WKB method can be applied when
me > 1 or, i,e., when e>» m1/2,

One next computes the integral appearing in the
definition of T,

6] m o
/ fp]dr:me T—__—D(V{‘;(p)—w2)l/2dp. (A4)

2 Pm™E

From (A1) the value of the integral turns out to be
24p,,/(1 = p,) X me*. Hence the criterion requlred for the
validity of the WKB method, namely me? > 1, is respon-
s1b1e in making T negligible. So when the roots of V%(p)
- w?=0 are close, but not so close that the relation
e>>m/? fails, total reflection of the partial wave
occurs,
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In the event when € is less than the critical value for
the WKB approximation to hold, the differential equation
(30) itself may be approximated. At the point x =7~ 7,,
where 7,,=2mp,, and »<<7,, Eq. (30) takes the form

&y 72 Al x
-y (@) v as)

where |x|< 2me and A? is given by (A2), Effecting the
transformation,

A’}’m 1/2 e}
y=x<2m(2m—1'm)) and ¢ =y; X
(A5) becomes

d2¢>

Ar,
2m@m-r,) "

— +y*¢ =B, (A6)

where

2mAY,

2
B ==

The solution of (A6) can be obtained by the contour
integral method of the generalized Laplace transform
type.

Set
o) = [ exp(ty?) () dt, (A7)

where after substitution into (48) and solving, f(¢) turns
out to be

exp(— +B* tan"12¢)

F(8) = constX ey (A8)
and the contour C to be chosen so that
A lexplty?) F(t) (42 + 1)} =0. (A9)
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Slavnov-'t Hooft identities in Mandelstam’s formalism
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In Mandelstam’s gauge-independent quantization formalism, Slavnov identities are shown to originate
from the fact that auxiliary Green’s functions in various gauges (Feynman gauge, Landau gauge, etc.)
satisfy the same fundamental equation. Furthermore, we have the practically important result that the
infinite number of Slavnov identities are obtained in concise and concrete form. With the help of this
form, we are able to easily derive various ’t Hooft identities, which assure us of the gauge independence

and the unitarity of the S matrix.

I. INTRODUCTION AND PRELIMINARIES

In 1968 Mandelstam' quantized the Yang—Mills field
in his gauge-independent path-dependent formalism,
Starting from the equal time commutation relations
among gauge~independent path-dependent quantities,
he investigated the auxiliary Green’s functions and ob-
tained the same Feynman rules for the Yang—Mills
field as prescribed by? Feynman, DeWitt, Faddeev, and
Popov. However his commutation relations are unfor-
tunately wrong, and there exist consequent systematic
errors in his treatment of the covariant Green’s func-
tions, In a previous paper,® we succeeded in clarifying
Mandelstam’s quantization scheme by deriving correct
commutation relations with the help ot the Peierls
method.

On the other hand, many people have recently used
the Feynman path integral method! as the quantization
of the Yang—Mills field. Various important results
have been obtained by this method. Although this method
is very powerful and heuristic, it is not well based on
the field theory. Therefore, it might be interesting to
develop Mandelstam’s formalism by showing how vari-
ous results are obtained in Mandelstam’s quantization
scheme. In this paper we discuss the generalized
Ward—Takahashi identities,

In the Feynman path integral method, Slavnov has
clarified® the fact that the generalized Ward—Takahashi
identities (hereafter referred to as Slavnov identities)
originate from the local gauge invariance of the Yang—
Mills field. This fact is not clear in the canonical
quantization scheme, since the canonical quantization
starts from imposing the gauge condition, On the other
hand, Mandelstam’s quantization is carried out in
gauge-independent manner, so that we can expect that
the origin as well as the derivation of the Slavnov iden-
tities is clearly understood in the field theoretic Man-
delstam’s quantization. (Throughout this paper, we
leave aside all questions of infrared divergences and we
assume that all expressions are dimensionally regu-
lated, ® so that formal manipulations of Feynman ampli-
tudes are justified.)

In Sec. 1I, we easily find the infinite number of
Slavnov identities among off-shell Green’s functions.
Moreover we have the practically important result that
these identities are obtained in concise and concrete
form. This result enables us to easily perform various
calculations in Sec. III.
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With the help of Feynman rules and the special
Ward- Takahashi identities, *t Hooft’ has perturbation-
ally derived generalized Ward— Takahashi identities by
the combinatoric method. These identities (hereafter
referred to as ’t Hooft identities) have been used in
proving the gauge independence and the unitarity of the
S matrix, In Sec. III, we rederive ’t Hooft identities
with the help of Slavnov identities derived in Sec. II,

In Sec. IV, we discuss our results,

We shall consider the self-interacting massless
Yang—Mills field, and use the same notations as those
in Mandelstam’s paper.' At this time we give some of
Mandelstam’s results! which are necessary in the fol-
lowing sections, In order to treat the auxiliary Green’s
functions, Mandelstam has devised operators A%(x) and
78(») acting on a linear space of the covariant Green’s
functions. The auxiliary Green’s functions are then
given by

n ~
(Hy 1 AL (x;) |G> (1 =1~), (1.1)
and the equations for them are obtained in the following
concise form:

[e% 0¥ A%(x) — 02 A%(x)} +gj2 (x) - 163 (x)]|G)

=@ | D} [0F]x) = 102 (0)]|6) =0, (1.2)
where
(@ | D% ) =00y 3% + g€ AS (1),
7o (0) = 0% A (x) = 95 A2 () + geqp AL () AT(),
and
02(x)= n2(x) = [ [ (2 {D%|8) nh(3)] 3104y (x, ¥)
+ 80 9305 (6, 1) | ey (1.3)
with
[AZ(x), M(3)] = 8458,,,6%(x =), (1.4a)
(H|n(x)=0, (1. 4b)
and
(@ | D% |7) 050,5(x,3) = 040" (x ~3). (1.5)
Partial differential equation (1, 5) is solved as
Oglx,y)= :-%Ap(x—y)é,ay
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-5

n=1

d4x1 L d4x"%AF(x— xi)

X[igesbeAA(x1)aA 785y = %,)]
X [ige gnA S (xg) 2 5AR (g = xg) [ X0+ »
X[igeezr‘zt‘)(xn)a:rn%AF(xn_y)], (lu 6)

where

=i, )= d‘e exp - zkx)
rlx @nyf -k tie

11. SLAVNOV IDENTITIES

The partial differential equation (1, 2) cannot be
solved uniquely because of the factor

an{or A% (x) - LAZ()},

(1.7)

(2.1)

and (2. 1) originates from the fact that the Yang—Mills
field is a gauge field, Taking account of the ambiguities
resulting from (2.1), we try to solve (1. 2) in the form
[FAL () +255 () = i3 () = igam ¥} Oy (6,9 ey
+35A%(x)]]G) =0, (2.2)

where A%(x) is arbitrary so far as (2.2) can be solved
uniquely. However auxiliary Green’s functions which we
want to obtain are those satisfying (1.2), Therefore, we
must investigate whether Green’s functions determined
by (2. 2) identically satisfy (1.2). This problem is re-
duced to proving

[- 35 A%) +i [ d{(v D% |8) 1E(9)} 04y (x, ) ~ A%()]|G)
=0, (2.3)

with the help of (2.2). In order to prove (2.3), we first
move 1% (y) in (2. 3) to the right of O,,(x,y). This can be
carried out in the following way. Both 8'V2(x) defined
by

oV () =n2(x) = [ d'y 350,,(,y)v [D% [8) 0l (),
(2.4)

and 6%(x) given by (1.3) satisfy! the same equation

(a |D%|7) 65(x) = (@ | DX |y) 617 (x) =0 (2.5)
Therefore, we find
a [DE |6V (x) - gx)] = (2.8)

On the other hand, (1.3) and (2. 4) show that the differ-
ence 6'1%(x) = 62 (x) is in the form

0D (x) = 0% (x) =g€qpy 020 (0, ¥) |xoy + 5 T%(x).  (2.7)

Substituting (2. 7) into (2. 6), we find that 7'%(x) in (2. 7)
is given by

Te(x) == [ d% 04y (%, 9 ) [ D3 |5) gesen 122000 (3,2) | yuahe
(2.8)
Thus (1. 3), (2.4), (2.7), and (2. 8) lead to
S @y {1 D% 18) 18 (3)} 04, (%, 9)
= [ d% 04y (%, 9)(v | D3 | 6) 5(3) +gE oy Oy (x, x)

@, ¥)r | D3 | 8) goea {02 O3, 2) [yache
(2.9)

- [d%v0,,
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With the help of identity (2.9), the left-hand side of

(2. 3) can be rewritten into the new form where the fac-
tor 1% (y) always operates on [G) directly. Next we re-
place this 75(y)|G) with the one given by (2.2). Then
(2. 3) are found to hold identically by noticing

(PO (6,7} = geysd3 1AL (3) Oy, )}
= 6&554(x—y)7

which we obtain from (1.6). Identities (2. 3) are the
infinite number of generalized Ward— Takahashi identi-
ties among off-shell Green’s functions.

(2.10)

In the following, we investigate the special case where
the gauge fixing term A%(x) in (2. 2) is given by

€2, A%x). (2.11)

In this case, (2.2) can be integrated into

[A%x) = [ d'x’ D" (x = x")igi® (x") + ")

+g€aﬂyafof37(x’,y) x':y]iG)z (2'12)
with
D""(x—x’)z(& e a;[jl,,);AF(x-x'). (2.13)

In the Appendix, we shall prove that (2.12) leads to the

same Feynman rules as those prescribed by2 Feynman,

DeWitt, Faddeev, and Popov. [c=0 {c=1) is the Feyn-

man (Landau) gauge. | Substituting (2. 11) into (2.3), we

obtain the Slavnov identities

oy A“(v)’G )=i(l-¢) fd {tr|D2, |6 (3)}04,(x,¥)|G),
(2.14)

which are originally derived® by the Feynman path inte-
gral method.

1. ‘T HOOFT IDENTITIES

With the help of Slavnov identities (2.14), we shall
derive ’t Hooft identities’ of three types A, B, and C.

(Type A) We investigate the following Green’s
functions

W{H (Bisp1), H(ai’xj)}z[n Tui(pi;yi)J[n 82’]
=1 j=1 i=1 =1 4

m n
Xc{inl (Bi? viayi); _n1 (aj: “j’xj)})
= J=

(for m>=20andn=1), (3.1)
where
m n
G{n (Bi; viyyi); I—l (aj: p‘j)xj)}
i=1 Jj=1
m ~8. n ~a:
=(#] 1 &5 1 2220 ) (3.2)
izt ? j=t I
Tp;y)= lim e.(p) [ d% explipy) ¥ (= e,(p)U(p;»)),
52+
(3.3)
and €,(p) is the transversal polarization vector
Pvfp(P)=0- (3. 4)
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Slavnov identities (2. 14) show that (3.1) is

n m n
[ﬂ azjj]c{ﬂ Bisviyv:); H (ajy lij,xj)}

=i(1=¢) (H[ mA ‘(yi) r1 2, Ay (o)

equal to

% f dtz {(elDzIz)ni<z)}o%e<xmz>lc). (3.5)

With the help of (1. 4a), we can move n5(z) in (3.5) to

the left of all operators. Then, (1.4b), (2.10), (3.1),
(3.3), and (3, 4) lead to
{I:l (Bhpi) H (aj’ x;)}
=—i{l=c) E B o, 84X, =1x,) W{H Bi,D4);
P O =1
n-1
ﬂ {o;,x; )} (for w=2 andm =0), (3,6)
(J¢k)
and
W{H (Bi,p‘);(a,x)}EO (for m = 0). (3.7
i=1

In the following, we shall prove that (3.6) and (3.7) lead
to ’t Hooft identities (3.6) in ’t Hooft’s paper”: In special
cases, (3.6) and (3.7) give respectively

Wiy, x) (@, x9) b= = i(1 = C)6a2a154(x2 - X1}, (3.8)
and
Wi(a,x)}=0. (3.9)
By using (3.8), (3.6) can be rewritten into
W{n (B:0); T (@ x,)}
’ﬂ n-l
=2y W{; (ijyx Ny, X, }W{H (B;,04); T ! (aj’xj)}-
Bt dan
(3.10)
Then we find from (3.7) and (3.10)
{H Bisp s ﬂ (Ol;, )}50 {for odd n and m = 0}
i=1
(3.11)

and

{ﬁ (8,203 T <a,,x,>}

«W{I‘l {(Bi, p1) }E W{ (aj,x)(ak:xk)}“"

XW{;(aty, %)@ %,,)} (for even n(z 2) and m = 0),

(3.12)
where 3/ is the summation over all #/2 pairs
(j,#), ..., (I, m) taken from (1,2,...,n). For the follow-

ing discussion, we introduce new Green’s functions G
by

§=1

~ m n
c’ig B, v, 911 (ay, 25, x»}
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EG{HI (Bl’ Vi)yi); ,1_11 (ai: thj)}
i= J=
- G{.ll (Bys Vi,yi);}z, G{;(ab g X )@, Hk,xk)}

Xoon XG0y, g, X0y U X )b (3,13)

Then (3.12) can be expressed by

~ m n
W{H B;,p); O (aj,x,-)}EO (for even n and m = 0),
i=1 ;

j=1
(3.14)

where W is obtained from (3.1) by replacing G with G,
In the following, we shall reduce identities (3.11) and
(3. 14) to identities with respect to W°, where W¢ is
obtained from(3. 1) by replacing G with the correspond-
ing connected part G°: We can easily prove by (3.9),

(3.11), and (3.14)
W“{; n (a,.,x,.)}s 0 (for n>3). (3.15)
7=1
Furthermore (3. 7) and (3.9) give
W, p); (@, x)t= 0. (3. 16)

With the help of (3.9),
from (3.11) and (3. 14)

(3.15}), and (3. 16), we can find

Wc{l'l (Birpy); I (aj,x,)}fo (for m=21landn=1) (3.17)
i=1 =l
by the following mathematical induction: First, (3.16)

means that (3.17) is valid for m =n =1, Next, we as~
sume that (3.17) is valid for any »7 and n provided
+n =L, Under this assumption, we shall prove (3.17)
for any w +n =L +1. For this purpose, we investigate
any one of the identities (3.11) and (3.14) for m +n =L
+1 (where m >1 and n =1). Since G (G) in (3. 14)
[(3.11)] has contributions from various disconnected
Feynman diagrams, we consider any one of them. The
contribution in consideration can be expressed by the
product of some Ws. In the case when there exists at
least one W° of type m =1 and n =1, this W° (for which
m +n =< L) identically vanishes by the assumption, In
the other case, there necessarily exist W®s of type m
=0. Among these W®g, there exists at least one W° of
type n = odd [even n (> 4)] for G (&), so that this W*°
vanishes identically by (3.9) and (3. 15). In conclusion,
contribution from any disconnected Feynman diagram
to W (W) in (3. 14) [(3.11)] vanishes identically for
m+n=L+1. Thus we have proved (3.17) for any

+un=L+1, Q. E.D.
From (A8) in the Appendix, we have
Gl @, 1, 1)@ i o) = B g, DH 14251 = )
+AG{i (o, w2y, By, o) (3.18)

where AG vanishes in the limit g =0. With the help of
(2.13) and (1.7), we find

&l ajﬁzp“”m —xy)=—i(l - )5 (x; = x5). (3.19)
Then (3.8), (3.18), and (3.19) lead to
X,
3211 af?AGc{;(O‘n 1, X (@y, g, %) [=0, (3.20)
so that we obtain
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B 02 mulh (ry, ) =0, (3.21)

where 7 is the proper self energy correction. Thus, we

find that ’t Hooft identities (3.9), (3.21), (3.15), and
(3.17) hold for any value of c.

(Type B) By using (1. 4a), (1.4b), and the identities
(3.5), we find the ’t Hooft identities (6.12) in ’t Hooft’s
paper”:

m m ~8
[H T, (pi;yi)][n U(qhzj)](H] ANy,
i=1 i j=1 i=1 i

<11 Dle) 94z c)
i=1

J=t

n m ~g n ~y
x[Z (H{HA,,‘(y,) N A z,)3:0,, (x,z,,)[c)],
k=1 i=1 i j=1 3 ® k

(iR
(3.22)
where the operator U has been defined by (3. 3).

(Type C) In Feynman gauge (c =0), ’t Hooft proved
the unitarity of the S matrix, by using the identities
(6.19) in his paper. " He proved his identities (6.19)
with the help of the identities which are graphically
expressed by Fig. 1.

a

(3.23)

We refer the graphical meaning of (3.23) to ’t Hooft’s
paper. 7 In the following, we shall prove (3.23): First,
we continue to transform the left-hand side of (3.23),
as far as we can apply (3. 22). The final result can be
grouped into factors of the type

m n 1
I;H1 T,,i(p,;yi)]l:jﬂI U(qj;z,)] [HI Ulsp; Up) U(tk;wk)] Ulr;x)
= = k=
m noo~ 1 ~
<0(u| A %00 1l &) 11 04 40 23430 6),
=t 1 jmt 4 T Ret KR

(3.24)

where @ is the total antisymmetrization operation
among (o, x), (5;,73),...,(5;,v;), which corresponds to
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the fact that the Faddeev and Popov ghosts obey Fermi
statistics. "2 In order to show the way we calculate
(3.24), we consider for simplicity

[‘171" Tl,{(p,;yi)][}""l1 U(q,;z,-)]U(s;v)U(t;w)U(r;x)
1 -

x(11f A0 1 Ao Owto, ) 25 A2)
i=1 =

—Oac(x,w)azgﬁ(v)]lG). (3.25)
With the help of the Slavnov identities (2.14), (3.25) in
the Feynman gauge ¢ =0 is found to be equal to

[fln Tvi(p,;y,)][ﬁ U(qj;zj)] Uls;v)Ut;w)U(r;x)
=1

i=1
x[z’(H| A% (y,) [ A7 (z,) Ope(w, w)
i=1 i i=1 7
X [ dud(7| DY | 0)n ()} O o, )

-{(a,x)-—-(é,v)}lc)]. (3.26)

Next, we move nﬂ (1) in (3.26) to the left of all factors,
by using (1. 4a), (1.4b), and

[O“(v,w), nZ(u)]:—goan(v’u)enew azowt(u’w), (3.27)
where (3.27) can be derived from (1.6). Then, (3.26) is

found to be

- zLIl T”i(pi;yi)][]!l U(q,;z,):l Uls; ) U@t;w) Ur;x)

X[E (Hlﬂ By T A, 00, (,2,)
ket it b ! BOE

X Opelt, 10) rc)-{m,x)«v (a,v)}] (3. 28)

in the following way: In order to derive (3. 28), we have
used (3. 22) and the following formula:
€noy | AU O, u) 3% 0, w)

X Brg 8 +8ereo AL (1)} 0, 1(x, 1)

= tngo | A0 4o, 1) 3% O el )

X{= g 3% +gerep AL (1)} Opelv, 1) (3.29)
== €nqo f d*u 3% 0 e, w) BZ{OM(x, 1) 0 gV, 1)}
+&(€n50 €ren = €rp0 Enco) f d'u 0 (%, u)
XOB,,(v,u)gfL(u) 340 e, ) (3. 30)
=€nre fd4u0a,(x,u)()ﬁ,,(v,u)
X{T# Oy, ) +g60595§ () 840 e, w)} (3.31)
=€nrp Or(¥,20) Oy (v, 20). (3.32)
In obtaining (3. 31) and (3. 32), we have used
respectively
€onoore T Eane€opr T Egniboer =0, (3.33)

and (1.5). Then, the factor U({;w) leads to the fact that
(3. 32) does not contribute to the right-hand side of
(3. 25). Q.E.D.

By using (3.22) and identities obtained similarly to
(3. 28), the left-hand side of (3. 23) is generally reduced
to the right-hand side of (3.23).
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1V. CONCLUSION AND DISCUSSION

We have investigated Slavnov—’t Hooft identities in
Mandelstam’s formalism. Slavnov identities originate
from the fact that auxiliary Green’s functions in various
gauges satisfy the same fundamental equation derived
by Mandelstam. Since the infinite number of Slavnov
identities have been obtained in concise and concrete
form, we have been able to explicitly prove ’t Hooft
identities of type C {i.e., (3.23)] which assure us of the
unitarity of the S matrix. In the following, the identities
(2.14) are shown to lead to the fact that the S matrix is
independent of the value ¢: First, we have from (A8} in
the Appendix

d s f a0, 050G 1 '
—a-EW[J]=-§ dix d'x' == Ap(x =x')

X exp[ifd‘iy{ﬁ () +Lu(3’)}]

XJ8 () J2 (x*) exp[%fd“z diz' I (2)D¥¥ (2 = 2/ )Tz ")].
4.1)
On the other hand, we have from (A8)

535 T2 M11= O (0r0— ¢ B sy = 5L

4, 2t 3195 \1
+ | dvd'w | b, = o 85 (x =v)

X (690— c Qfx’a;ayjﬂt:)%AF(x' -w)

Xexp[i fd‘*y{LI(y) +Lu(y)}] J5w) Iy w)
xeXp[é fd‘*z d'z' J*(z) D*(z -z')Jg(.z’)]. (4.2)
Then, (4.2), (2.13), and (1,7) lead to

(5000 2 2378) (0 b0+ 15 92 ) sy ey ™)

= bg, <D"6w + i—_c? 3% a’;) 184 (x = x"YW[J]

—~exp[z' [ d‘*y{LI(y)+Lu<y>}}J%<x>Ja<x')

xexp[—z‘-fd‘*z d4z'Jﬁ(z)D“"(z-z')J3(z')]. (4.3)

Substituting (4. 3) into (4.1), we find from (1. 7)

BN = ate dbe? 8200 = 17
= WlJ] = 2'/idxdx o4 x = x")

% {z - 3 — 81 = x) W]

1 . & 1 5
" 5P 1-¢ % 5T5(x’) W[J]}
(4.4)

The last term in the right-hand side of (4.4) can be cal-
culated by (A2) and
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FAB(x) B5A%x) |G)
= (1 = ¢)[- 164,6%0) +i [ d*9{6|D% |e)n% ()}

X 0g(x,9) 35AL)]|G), (4.5)

which is derived from (2. 14). With the help of (4. 4) and

(4.5), we can prove that the S matrix is independent of
¢, in much the same way as ’t Hooft and Veltman did. ®

APPENDIX: GENERATING FUNCTIONAL OF
GREEN'S FUNCTIONS

In this Appendix, we ascertain Mandelstam’s state-
ment that (2, 12) leads to the same Feynman rules as
those prescribed by Feynman, DeWitt, Faddeev, and
Popov. For this purpose, we investigate the generating
functional W[J] defined by

= 1/ o;
wiJ]l=1+2, ?<£Ilfd4x,.Ju;(x,)>

n=1 ‘

(A1)

First, the equations (2,12) determining Green’s func-
tions are rewritten into the equation determining W{[J],
by using

(B A% () AB(y) +» A%(2)| G)

o 5 5 (7]

=mm T mE " (A2)

J=0

The result is

[5:]“6(9() = igf dd‘x’Dpp(x—xl){eaBr(_ &]B:Zx’)af 6J7'6(xr)

&

Y27 U T T A wz(x')>

5 5 6
+ &€ 0 mEroe §Jﬂx,) Mi(x/) &I:(X')k
- fd4x'DVP(x— X1 T (x)

- g€ /d“x’D”"(x 0 a§'5B,(x', v)

x! =y] W[J] =0.
(A3)

In (A3), 55,(x,y) is_the operator obtained from Og,(x,¥)

(1.6) by replacing A%(x) with §/6J%(x). Equation (A3)

can be solved as follows: We introduce W'%J] by
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W)= expl—i [ d'x{[ (&) + L o(®)}] WJ], (A4)
where

- 1 0 ) X b x Y
Lr(x)= = 28€asy GJﬁ(x) OJ',',(x) (au 6J,‘f(x) -0; GJﬁ(x))

1, 5 5 5 5
= 8 Canrase 5By BIT(x) 0I5 (x) BJ4(x)

and

=1 X 4] 1
=1 d4x-°°d4X[ €, s —=— O34 (x-x)]
L 11lx) ZE 1 n|®8€ras &I‘:(x) v2AF 1

n=0 n+l
, 8] x
X [:lgeﬂﬁe Gy A ZAp (g~ xz)]x‘ ..
X [igeg,, 63,—%(—)- an éAF(x,,—x)jl. (A5)

Then (A3), (A4), and (A5) give

f dx'D"(x — x7) I (x") W]
=/d4x’D”"(x—x') exp[— i/d“y{L I(y)+Lu(y)}}
x{=i / d2[J2 "), L&)+ Lu@)]+IE W]

=exp[~i [ a9 {L (3) + Lu(y)}] &7_‘?(7) wlJ]
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—— WJ], (A6)
so that we finally find

W] =exp[3 [ dixdia’ J%(x) D*¥(x — x") JE (x")]. (AT)
In conclusion, we obtain from (A4) and (A7)

Wil =expli | d{/ 1(x) + £ 1(0)}]

Xexpls [ dxd'x’ J(x) D*(x = x")J%(x")], (A8)

which is the same as what is obtained by the Feynman
path integral method. !

13, Mandelstam, Phys. Rev. 175, 1580 (1968),

’R. P, Feynman, Acta Phys. Polon. 24, 697 (1963); B.S.
DeWitt, Phys,Rev. 162, 1195, 1239 (1967); L.D, Faddeev
and V.N, Popov, Phys., Lett. B 25, 29 (1967).

33, Naito, Phys, Rev, D 14, 3584 (1976).

4As one of the review articles on the Feynman path integral
method, we give E,S, Abers and B,W, Lee, Phys. Rep.
C9, 1 (973),

A.A, Slavnov, Theor. Math, Phys, 10, 99 (1972),

%G, * Hooft and M. T. Veltman, Nucl. Phys. B 44, 189 (1972);
C.G. Bollini, J.J, Giambiagi, and A. Gonzales-Diminguez,
Nuovo Cimento 31, 550 (1964); G. Cicuta and E, Montaldi,
Lett, Nuovo Cimento 4, 329 (1972).

'G. 't Hooft, Nucl., Phys. B 33, 173 (1971),

8G., 't Hooft and M, Veltman, Nucl. Phys, B 50, 318 (1972),
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On independent sets of basis functions for irreducible

representations of finite groups
Vojtech Kopsky
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(Received 29 March 1977)

Two theorems on bases of irreducible representations of finite groups are compared. It is stressed that
their validity depends upon the functional sets for which they are formulated. The first theorem, which
states that there are as many linearly independent (modulo the identity representation) sets of basis
functions as is the dimension of the representation, is shown to hold only if the considered functional set
constitutes a field. Otherwise, more such sets are necessary as shows the second theorem (extended
Noether’s theorem), which is limited to polynomial algebra. The second theorem seems to be more apt for

explicit construction of functional bases.

INTRODUCTION

The first of the two theorems we want to discuss here
has been formulated by Hopfield*; it is also given to-
gether with its proof as theorem 3.8.1 in the book by
Lax.? The second theorem has been proven by us for
finite abelian groups?; it holds, however, for any finite
group as will be shown in a pending publication.*

It is suitable to discuss the matter in the language of
covariants which we have borrowed from Weyl’s book.?
Let A(G) = T'(G;e,) be a group of linear operators on a
linear space L_ (i finite) which, in a basis {e,} of L,
are expressed by matrices D(g) of the corresponding
matrix group I'(G); ge G are elements of an abstract
finite group G of which A(G) and I'(G) are faithful op-
erator and matrix representations. Further, let ¢{*’(x),
i=1,2,...,0,(c,=dimI" ) be a set of functions on L,
having the property

A @1 (x) =D (g0 (x), (1)

where / (g (x) = #(A(g-1)x) defines the action of group
elements on functions of xe Ln,D;;’“(g) are the matrix
elements of matrices of an irreducibte representation
T, {G) adjoint (reciprocal and transposed) to a certain
irreducible matrix representation 'y {(G) of the equiv-
alency class I' . We denote the set by § ‘@ (x) = ({*’

X (x), b5 (x), ..., ;bf,‘;’(x)) and call it the T',, covariant.

Notice that, in a basis {e,,,;} of L in which

@)

aavi)’

k Mo
AlG)=a@ & T,,(Gse
a=1 g=1
the vector components x,  , of x=x,,,,e,,,, constitute
the 'y, covariants x{® =(x,,,,,¥ag2> « - =5 ¥ag,0,)e ThE
total number », of these I'j, covariants equals the num-
ber of times the irreducible representation of equiv-
alency class I', is contained in A{G), «=1,2,...,«
runs the equivalency classes.

INDEPENDENT COVARIANTS

Theovem 1: There are precisely ¢, of 'y, covariants
independent modulo the identity representation or, in
other words, any I'y, covariant $*'(x) is expressible as

oa

Plorx) =25 FV &P &), 3

i=1
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where ${*’(x) are the o, linearly independent I'y, co-
variants and F{(x) are invariant under 4 (G).

This theorem is an analog of theorem 3.8.1 by Lax®
and its proof can be carried out in the same way if,
instead of about spherical harmonics, we speak about
polynomials in components of x. We reproduce here
only the part of the proof which is essential for further
discussion.

Proof: The I'y, covariants can be interpreted as
vectors of ¢ -dimensional vector space. Then for each
x, for which the ${*(x) are linearly independent, we
can determine the values of F{¥(x) as a solution of the
o, linear equations (3). We can certainly find o, poly-
nomial I'y, covariants ${*(x), which will be linearly
independent.® Then the determinant A(x) =Det| ${*(x)!
does not vanish almost everywhere and the solution
FV(x) accordingly exists almost everywhere. As the
last step it remains to be proved that these solutions
are invariants for which we refer to Lax.?

Theorem 2 {extended Noether’s theorem): There ex-
ists a finite number of polynomial T, covariants p{* (x)
such, that any other polynomial 'y, covariant p‘® (x)
is expressible as

P x) =25 PP )p (x), 4)
i
where P (x) are polynomial invariants.

For the proof of this theorem we refer to our work
on the extended integrity bases of finite groups.®* The
set of independent (modulo the identity representation)
p{**(x) is called the linear integrity basis of Ty, co-
variants and all such sets together with the integrity
basis of invariants are called the “extended integrity
basis” associated with the typical’ representation I';(G)
= T4 T0a G).

It is known,® that the polynomial invariants (', co-
variants) constitute a polynomial algebra /; with a finite
integrity basis. Theorem 2 could also be equivalently
formulated as follows: The space of polynomial T';, co~
variants is of finite dimension over /2, or, there exists
a finite number of linearly independent polynomial ',
covariants modulo the indentity representation.

Let us consider an arbitrary operator group A(G).
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The covariants x{* are linearly independent in the
sense of Theorem 2. At the same time the number 2,
of these covariants is not limited; indeed, it is only
the matter of the definition of A(G) and of L . Addi-
tionally, there are many others I’y covariants of higher
orders which are also independent in the sense of
Theorem 2, However, in all cases there should be only
g, of independent 'y, covariants in the sense of
Theorem 1.

There seems to be a contradiction between the two
theorems; Actually they are addressing different
problems.

To make it clear, we have to realize that at different
stages of the previous discussion we speak about dif-
ferent kinds of linear independence, A I'g, covariant in
a certain point X is a ¢, -dimensional vector and there
could be, of course, maximally o, linearly independent
vectors in a 0, -dimensional space. Here we have,
however, the vectors and the linear independence over
the field of complex numbers in mind. On the other
hand, formula (4) is connected with linear independence
of covariants over the algebra of invariants. Finally,
in Eq. (3) and in Theorem 1 we have also to specify
what kind of independence we have in mind; this fails to
be done in the proof by Lax.? As a result the following
weak point appears in the proof of Theorem 1: Taking
¥ (x) (i=1,2,...,0,) as linearly independent (in the
usual meaning of vector independence) polynomial Iy,
covariants, we are able to express any polynomial T,
covariant ¥ *’(x) as a linear combination (3) but, to do
this, we must generally admit rational invariants.

GENERAL FORM OF A COVARIANT

Let us consider a set 7 of function on L, which is a
linear space closed with respect to G: 4(G)7 =7 . It is
known that such space J has a basis whose elements
are components of I',, covariants.® The T, covariants
themselves constitute linear spaces 7‘®’; for any linear
combination § ,a,¢{* (x) of T, covariants ${*’(x) is again
a I'y, covariant. Here o, are the complex numbers. The
number of basie I'y, covariants which allow to express
any other Iy, covariant as a linear combination depends
an the definition of 7. It is, for example, denumerable
if 7 is the algebra of all polynomials, but the index i
may also take values from a continuous set etc.

On the other hand, the “linear combination” 3, FiV
X x§* (x) of Ty, covariants, where F{’(x) are from
the subspace 7 of invariants, is also a T, covariant.
One is naturally tempted to consider #'*’ as a linear
space, for which the coefficients of linear combinations
are taken from 7‘¥, However, the axioms of linear
space require that the coefficients are elements of a
field.” This is important for otherwise we can have a
set of (n +1) vectors related by a nontrivial linear equa-
tion, yet no one of these vectors may be expressible as
a linear combination of the others.

Let, for exampte, p{*’(x), i=1,2,...,0, be a set of
linearly independent (almost everywhere) polynomial
Ty, covariants, p‘®’(x) any other polynomial 'y, co-
variant. The equ%tion

o

A, (x)p (x) = iE A F® @D (x),
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where 4, (x) =Det I p{*’ (x) |, 4,(x) F{" (x) are polynomials,
is a linear equation for (o, +1) I'y, covariants, Yet it is
generally impossible to express any p'®’(x) as a linear
combination of p{®'(x) remaining within the polynomial
algebra for the F{!’(x) are generally rational functions.

If 7 is an algebra, then 7"’ is an algebra, if 7 isa
field, then 7 is also a field since the polynomial or
rational functions of polynomial or rational invariants
are again polynomial or rational invariants. Therefore
in the latter case holds Theorem 1, whereas in the
former case holds Theorem 2.

It seems, that Theorem 1 provides a way of con-
structing covariants of the general functional form.
This is also somewhat stressed by Lax,? when mention-
ing the Noether’s theorem?® and the integrity basis as a
ground for construction of 7%, The integrity basis is,
however, good just for constructing the polynomial in-
variants, whereas to use Theorem 1 we need the ratio-
nal ones. To determine them we must proceed beyond
the simple knowledge of the integrity basis.

Let us show that the extended integrity basis provides
a set of covariants from which we can embark in con-
structing covariants at least in terms of functions which
could be expanded as power Series inxe L. We shall
illustrate it on the simplest possible example of the
group C, =2,. The group has two one-dimensional ir-
reducible representations and its extended integrity
basis is

r, r,
2 Xy
X2 y®

xy

As a carrier space L, we took here the three-dimen-
sional Cartesian vector space in which C,, is under-
stood as a crystallographic group. Notice that there
are two T, covariants independent modulo the algebra
of invariants. To pass from Theorem 2 to Theorem 1
we have to use the fact that the ratios x/y or y/x or
generally (ax + by)/(cx + dy) are invariants—then one
T', covariant will suffice.

The functions z, x2, y*, xy constitute the integrity
basis of polynomial algebra ?,, i.e., any invariant
polynomial in x, y, z is expressible as a polynomial
in z, 22, y2, xy. The elements of this integrity basis
are also polynomially independent, i.e., no one of
them is expressible as a polynomial in the others
(otherwise such polynomial would be redundant from the
viewpoint of the integrity basis). There is, however,
an algebraic relation between them: {xy}* =x%?°.

Let us consider now an invariant function f(x,vy,2)
which can be expanded into power series. Cotlecting
the terms in this expansion up to nth order we can ex-
press the function as

fle,y,2)=P(z,x2,y%) +xyP,(z,x*,*) + terms of higher
orders than #,

where P, P, are polynomials of orders n, n— 2, re-
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spectively. In the limit we shall have

f,y,2)=£G, 2,9+ 295z, 42,59,

where f,, f, are functions which can be expanded into
power series. Any I', covariant will be expressed as

xfGe,y,2) +yf' (x,y,2) =xf,(2,2%,9%) + yfi (2, 5%,9°)
+x2yf2(z,x2,y2) +xy2f§(z,x2,y2)

=xglz, %%,y +yhiz, x%,y%).

Quite generally, to get any I';, covariant from a set
7/, it suffices to find a general form of an invariant.
The covariants will then be expressed by (4), where
instead of P{!’(x) we have to write the general form of
invariant. This approach has the advantage that the
properties of functions f(x,v,2) can be easily correlated
with those of f,(z,x?,y%),£,(z,4%,7?); the functions will
be, for example, rational, analytic continuous etc.
simultaneously.
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Let us, in conclusion, mention that, for a special
case of vector representations of the crystal point
groups, the general functional form of invariants has
been found by Doring®'® with use of another approach.
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SH, Weyl, Classical Groups (Princeton University,
Princeton, N.J., 1946),
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Scattering theory for Stark Hamiltonians involving long-

range potentials
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A time-dependent and stationary scattering theory is developed for operators of the form H = Hy+ V,
Hy= —A+Ex with V a long-range potential having the asymptotic form V(x) = O(x|™") as x— oo,

0<l<g1/2.

I. INTRODUCTION

The “modified” or “renormalized” wave operators
Q, corresponding to the self-adjoint operators H, and
H, with Hy spectrally absolutely continuous are defined
via the following strong limits

Q, = s-1im exp(iH,t) exp[-iH,t — iG(Hy, t)],

g

(1.1)

where G(Hy,t) is an appropriate self-adjoint function
of Hy and {. For the particular choice of self-adjoint
operators Hy=—-A and H, =- & + V the existence of
renormalized wave operators with G(- A, #)#0 has
been shown!=® for a general class of long-range poten-
tials V(x) having the asymptotic form

V(x) =0(|x|), as |x| ==, 0<I<1.

In Sec. II of this paper we show the existence of re-
normalized wave operators for a general class of
Stark Hamiltonians: H,=H=H,+V,, H=H,=-A+E
-x with V,(x)=nlx1""+ V(x), n€R?, 0<I<jand V(x)
satisfying condition # of Sec. II. For short-range
potentials the spectral and scattering properties of H
have been studied in detail by Avron and Herbst’ and
Herbst. ® In particular Avron and Herbst’ have shown
the existence of wave operators W, (H, H) for po-
tentials V, satisfying 4 [note when the limits (1.1)
exist with G(Hy, {) =0 we term the resulting limits wave
operators and denote them by W, (H,, Hy)l.

When G(H,,t) can be chosen zero the resulting wave
operators can be shown to have the following Rie-
mann-Stieltjes integral representations =1

W, (Hy, Hy) =s-1ir0n W.es
€+

i€

_ ‘f&)_—_—_ H1

W= J 2 Hy —~ Atie HE (1.2)
e H +1€
= LB e

where Ef2 and Ef1 are the spectral functions for H,
and Hy respectively. The representations (1.2) lead
to Hilbert space versions®!! of the Lippmann—Sch-
winger equations and to integral representations for
the T operator. The derivation of (1. 2) is not valid for
the renormalized wave operators with G(Hy, ) #0
since in general exp[-iG(Hy, {)] does not form a one-
parameter group in £,

One way to circumvent the above difficulties is to
obtain the renormalized wave operators as strong

a)present address: Department of Mathematics, University of
Alberta, Edmonton, Canada T6G 2G1,
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limits of modified time-evolution operators Q%(t),
i.e.,

Q¢ =s-lim %)y,
Bram (1.3)
Q%(t) = expliH,t) Z exp(~iH;t),

with Z a densely defined operator and ¢ in a dense sub-
set of the Hilbert space //. Under various assumptions
on the domains of H,, H,, and Z stationary represen-
tations similar to (1.2) can be derived. The existence
of operators Z such that (1.3) is valid with H,=- A+ V,
H,= - A has been shown!?=" for a general class of long-
range potentials,

In Sec. III of this paper unitary operators Z, are con-
structed such that the renormalized wave operators
corresponding to H=H,+V,, H,=— A+E -x have the
representations (1. 3). The resulting time-dependent
formalism is applied in Sec. IV to obtain a stationary
scattering theory for Stark Hamiltonians involving long-
range potentials.

Il. RENORMALIZED WAVE OPERATORS

We will assume E={,,0,0), ¢,>0, x=(x,x,). In
general we follow the notation of Avron and Herbst.”

The following condition has been shown’ to be suf-
ficient for the existence of wave operators W,(H,H,),
H=H0+V, HO:—A+ €oX.
A: V=V,+V, where

(@) V, = L*(R%)

(b) (1 +x*)*V,= [%R?) for some N and for x<0

|V, (x)| <€+ | x, (1 + | x|)-tnereerr2

for some n> 0, ¢>0, and constant C.

The above condition excludes potentials having the
asymptotic behavior V(x)=0(1x|™) as x| — e,
0<I<3. The existence of renormalized wave operators
for such long-range potentials is shown in the following
theorem.,

Theovem 2,1: Assume V,(x)=nlx]| "+ V (x) where
=R, 0<I<$, and V, satisfies 4. Let H be any self-
adjoint extension of

(Hy+ V(X)) P oprsyy Ho=—A+ex, ¢,>0.
Then the renormalized wave operators
Q*:s;lim exp(iHt) exp[— iHt - iG{£)] (2.1)
Tew
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exist where

(e 2nlog|t] for =14,
Gt {

G-lT] ] “ 1-21

1
e(£) 5y for 0<lI<g,

_j1r >0,
E(t)_{-l t<o0.

The case ¢,> 0 considered in the above theorem dif-
fers from €,=0 in several respects. For ¢,>0 Avron
and Herbst” have shown that the functions G,(t) can be
chosen zero for V,(x)=0(1x|"") as ix| —~», 3<I<1,

In contrast when ¢, =0 this is not possible. Furthermore
for ¢,> 0 the functions G,(t) do not depend on H, while
for ¢,=0 the functions G(- 4, t) depend explicitly on -A.

(2.2)

Theorem (4. 1) of Prugovecki®® shows that the re-
normalized wave operators (2.1) satisfy the intertwining
properties

exp(tHs)Q, =9, exp(iHs),. s=R',

It follows from these relations that H rQ*/-/ are unitarily
equivalent to H,. Thus o, , (H)=0, . (H)=(-», +»)
[see Theorem (1.1) of Ref, 7] where o, . (4) is the ab-
solutely continuous spectrum of A.

Proof of Theorem 2, 1: Following the proof of
Theorem 3.2 given in Ref. 7 we must show f}(f) is
integrable on [, + «) for some t,> 0 and $< C2(R?)
where

A = {Vilx —et?, x,) - nes't? exp(iat)p||

for 0 <1< (we consider the case £>0 only since <0
is analogous).

The function fI(f) can be bound as follows:
B < L)+ L) + 1,(1),
where
L=V (x —e,t?, %, Jexp(iat)y |,
0=} J{{er-e +x,)7T
-5ty g exp(iani],
L=l I{ltr =gty + |z, |21 72
— ;P - x expliat)b],
where y_,(I1x!) is 1 for (Ixi <cf and 0 for |x| > ct.

The proof of Theorem (3. 2) given in Ref. 7 shows
I,(t) is integrable on [f,, + ).

The standard estimate (Ref. 9, p. 414)
l] exp( iAt)d)” L SOt/
together with
{ltx - 2 + | =, 7172 — 57}
“13-21 (2% —2xe(12) / ef 1
:-_—El—zt——l./; (1 +uy /22y
leads to the following inequality

. (xz—zxeotz)/e%t4
Iz(t) < Clt-zl-B/Z{f dx l L

Ix|<ct

X (1 +u) /2" du 2{1/2
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for some constant C,. There exists a {,> 0 such that

(X2 = 2xe t?)/e24* > — ¢ for all t > ¢, and |x| <ct, Thus for
constants C, and C,

Iz(t) < Czt-zl-u /2{

Ixlsct

dx(x® ~ Zaceotz)z}1 2 ¢ C -2t

which is integrable on [t,, + «) for [>0,
The integrability of I,(¢) follows immediately from the
estimate [Ref. 7, Eq. (3.9)]
| [exp(iatp)(x)] < Dy(1+ 52+ )"

valid for any positive integer N and (x‘ > ct with ¢ an
appropriate constant depending on .

1. MODIFIED TIME-EVOLUTION OPERATORS

The operator H,= - A +¢yx is unitarily equivalent
[Ref. 7, Theorem (1.1)] to the multiplication operator
H,=lql? e, lql2=q? + q2, acting in L%(R3, dqdx),
i.e., Hy=UHU™.

We define the family of operators Z, acting in /3(R3,
dadx) as follows:

Z,=wu,w, (3.1)
where W is the one-dimensional Fourier transform
(W) (q, )= 1.1.m.(2m)1/2 [ 7 exp(ix’ t)p(q, x' )dx’ (3.2)

for = L2(R®,dqdx’) and U, is the multiplication opera-
tor in /3(R®, dqdt) given by

(U ) (a, £) = exp[ - iG,(t/e,) J¥(a, £).

Theovem 3,1: Suppose that the renormalized wave
operaotrs (2, 1) exist with the real function G,(t) satis-
fying

tlim expliG, (1)~ iG (t+1)]=1
S

(3.3)

(3. 4)

for almost all 7€R! and dG,(t)/dt a bounded continuous
function of {. Then

Q= st-lim exp(iH)Z , exp(~ tH,t)
g

. ~ 3.5
— W (H, )2, =2, W, (i, H) (3.5)

where B,=2,HZ}', A=Z}HZ,, and Z,=UZ, U™,

Proof: Once the first equality in (3. 5) is verified the
second and third equalities follow immediately via the
unitarity of Z,.

In order to verify the first equality we must show for
Y ES(R®)

lim B(1)=0,
B(t) = || {expliH t +iG,(t))Z , exp(— iH t) - I} .
The function B(f) can be bound as follows:
B(t) <B,(t) + B,(t) + B,(t),
where
B, (1) = | x g {explifl t +iG,(1)]Z, exp(- iH 1) - I},
B,(t)= || (1 —=xg Yexplifl ¢ +iG(D)Z, exp(=iH o,
By =1 -xp)l,

with y, (x)=1 for x| <R and y5(x)=0 for lx|>R.
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Integrating by parts yields

/ ’ (d exp(-ixu))
=0 du

X exp[— iG, (u/e, + 1) (W) (a, u)|?

By(t)=(2n)Y  dadx|x|"
Ix|>R

<D dx|x| %,
1xI>R
where the constant D depends on . Thus by choosing
R large enough B,(!) and B,(!) can be made arbitrarily

small independent of ¢.

To complete the proof we must show lim,., B,(f)=0
for each fixed R where

si0= e, dair| [Zar fewn i, (£ 41)
=T 0

+i6,(0)] - 1 expl-int 9@, )]

It is straightforward to see that the limits { — =+« can
be take within the !’ integral which via (3. 4) shows
limt,w Bl(t) =0.

Remavk: The functions (2.2) are not unique since any
real function G,(f) which satisfies

lim [|{exp[~iG (1) +iG,(0)] - 1] =0

yields the same renormalized wave operators as
G,(t). In particular the functions (2, 2) in the definition
of the renormalized wave operators can be replaced by

g (et *nlog(l + 2072, 1=3,

6'17](1 + t2)(1-21)/2
o A -7
zn(t) T 97 ,

G,(t)= (3.6)

0<l<y,

where 1(t) is a real C* function such that n(¢)=1 for
t>t, t,>0, and n{t)=-1 for < - {,. The assumptions
in Theorem (3. 1) concerning G,(t) are satisfied for
G,(t) given by (3. 6).

IV. STATIONARY SCATTERING THEORY

A stationary two-Hilbert space scattering theory has
been derived by Chandler and Gibson?! and Prugovetki®?
for wave operators based on the modified time-evolution
operators (1. 3) with H, and H, self-adjoint operators
acting in the Hilbert spaces //, and //2 respectively and
Z is a bounded operator from //, to //,. In order to ap-
ply these results to the scattering problem considered
in this paper we require the following technical lemma.

Lemma 4.1: Assume dG,(¢)/di is a continuous bounded
function of ¢, then Z, maps /(H,) onto J(H,).

Pyoof: For ) cS(R?) we have
HZ W)a, )= (Z Hu)a, )+ & 2)g, %)
where

R )@, %)== e(2m)H /2 [ 7 dt" expl—ixt’ —iG, (' /e,)]

x2G0/e0) g, ).

Since dG,(t)/df is bounded we obtain for some constant
« independent of y=S(R?)

l#.2,8] < o] +alull. (4.1)
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Since S(R®) is a core for the closed operator f,, if fol-
lows that for any ¢</(H,) there exists ¢, —~ ¢ as n— =,
¢,S(R?). Thus by (4.1), {#,Z,¢,} is Cauchy which im-
plies Z,¢pcD(H,), i.e., Z, maps D(H,) into D(H,). A
similar argument shows Z;! maps J(H,) into J(H,) which
verifies the lemma.

For simplicity we assume in this section that H is
self-adjoint with /) (H) =/)(H,) (see Ref. 7, Corollary
4.3). If in addition dG,(t)/dt is a continuous bounded
function of ¢, i.e., by Lemma (4.1), Z,)(H,)=0(H,),
then the results contained in Sec. 3B and 3C of Chandler
and Gibson?! and Sec. 2 of Prugovecki® are applicable
to the renormalized wave operators (3.5). We sum-
marize these results in the following two theorems.

Theorem 4.2: Assume H is self-adjoint with J(H)
:0(H0). Furthermore assume the representations (3. 5)
for the renormalized wave operators are valid with the
real functions G,(f) satisfying (3. 4) and dG,(t)/dt a
continuous bounded function of {. Then:

(a)
Q,=s-lim Wit , (4.2)
€~+0
T
ch’:_/:o., mZ,dXE‘;’O, €>0, (4.3)
(b) Fore>0
+o
1
Wf.l:ZI - . delEfo, (4. 4)
oy
zne=zit-f g, (®.9)
=20 Q
where V=HZ,-Z H,.
(c)
- . +© 1 H
Q,=Z, - se:1+10m[° T VAER, (4.6)
3 ] +00 1 . u
Q*_Zl—w.—‘l}omZ,'/_; HO—)\iiGV 4,EfQ,. (4.7)

Theorem 4.3: Under the same assumptions as
Theorem 4.2 the T operator T = Q*2_— I has the fol-
lowing stationary representations:

=97 -1 - Hoyk *6_____
(a) T=2i wé_gmL d,Efoy Q'(Ho—x)2+ez’ (4.8)

(b) T =(-2mi) w-lim [r=dEf [ 5,00 - p)

XT([A+ p+ée)/2)d, Ef (4.9)
where 5,(8)=(¢/7)}B*+€3)"! and
T(2)=(z2-H,)Z" 2 -H)'Z,(z -H,)- (z - H,). (4.10)

Remarks: Due to the unitarity of Z, the results of
Theorems 4, 2 and 4. 3 can be rewritten in various ways.
For example, the operator (4.10) can be rewritten in
terms of # and H, of Theorem (3.1) as follows:
lows:

T(2)=(z - H )z - H)"(z - H)) - (z - H,)
=ZM(z-B )z -H)Y z-H) - (z-A)}Z,.

(4.11)

When there are no long-range potentials present, i.e.,
7 =0 then Z, =1 and Theorems 4.2 and 4. 3 provide a
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stationary Hilbert space formalism for the wave opera-
tors W, (H,H,).
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Matrix element expansion of a spin wavefunction
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An expansion of the wavefunction for a free, massive particle with spin is obtained in terms of the matrix
elements for the unitary, irreducible representations of SL(2,c) by a method based on the theory of
induced representations. It is further shown that this expansion is equivalent to the Shapiro integral

transformation for the wavefunction.

I. INTRODUCTION

An expansion of the wavefunction for a free, massive,
spinless particle in terms of unitary, irreducible
representations (unirreps) of the Lorentz group was
first obtained by Shapiro.' Later, Chou and Zastavenko®
generalized this work so that it applied to arbitrary
spin. The method used by these authors was to assume
the existence of an integral transformation relating
the wavefunction to elements of the support spaces of
the unirreps of the Lorentz group. After obtaining an
explicit form for the kernel of this transformation the
expansion of the wavefunction was known, if it existed.
There was no guarantee of this existence, however.

Finally, Popov® obtained this same transformation by
a method which utilized the power of the representation
theory of SL(2,c).*® The essential merit of this
approach is that the existence of the transformation is
guaranteed.

In this paper we will use the concept of a covariant
projection, which derives from the theory of induced
representations, ®7 to obtain an expansion of the wave-
function in terms of the matrix elements, relative to a
canonical basis, of the unirreps of SL(2,¢). In contrast
to the expansions previously obtained, this results
in a very compact form for the expansion.

The method employed in this paper clearly shows
that the expansion of the wavefunction is essentially
a relation between representations of SL(2,c) which are
induced by two different subgroups. This produces a
neat, transparent derivation of the expansion of the
wavefunction which utilizes current group theoretic
techniques.

We will also obtain the Shapiro transformation in a
straightforward manner and in a form closely resembl-
ing the form given in Ref. 3, thereby demonstrating
the equivalence of our expansion to the Shapiro
integral transformation.

In Sec. II, we give a brief discussion of the irreduc-
ible representations of SL(2,c), and we set up the
formalism of covariant projections. In Sec. III, we
establish the canonical basis and obtain a closed
expression for the matrix elements.

In Sec. IV, we apply the formalism to obtain the
desired expansion of the wavefunction; and in Sec. V,
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we summarize our results, We derive the Shapiro
transformation in an Appendix.

1. COVARIANT PROJECTIONS

The (left) regular representation of SL{2,c) is realiz-
ed on the space L of square-integrable functions defined
over the six-dimensional parameter space of SL(2,c).
If Fe L then the regular representation is given by the
action of its operators on elements of L

{TUNFHD= F(I3) for all 1, [,€ SL(2,c). (1)

The support space L decomposes into orthogonal sub-
spaces L which are irreducible under the action of the
set {I'(1): 1€ SL(2,¢)}. The subspace L, supports the
(n, p)th irreducible representation (irrep) of SL(2,c).
The labels n» and p are associated with the eigenvalues of
the two irreducible operators of SL(2,c).

We define the (n,p)th irrep of SL(2,c) by the action of
the set {T'(1) :1 € SL(2,c)} on elements ¢™(z,2*) of L,
according to

{TWomHz, 2%)= (6 - B2) (6% = B*2*Np™(2’, 2'*), (2)
with the complex numbers 7 and £ being given by
n=zln+ip) -1, £=z(-n+ip)-1, ®)

and where z denotes either the complex parameter or
the corresponding element of SL(2,c)’s subgroup
Z={z=(19: ze C}. In Eq. (2), 2’ is the complex num-
ber (az - ¥)/(b - Bz), with I=( &) being a typical
element of SL(2,¢).

If n is an integer and p is a real number then Eq. (2)
defines an irreducible representation of SL(2,c) which
is unitary with respect to the scalar product

(¢,9)=(i/2) [dzdz* ¢*(z,2*) P(z,2*) ¢4 L,

Unirreps of SL(2,¢) satisfying this criterion are known
as representations of the principal series.

There is another series of unirreps of SL(2,c), the
complementary series,® which we will not be concerned
with since the principal series is complete in the
sense that the regular representation can be de-
composed in terms of the principal series representa-
tions except on a set of measure zero.® We will there-
for obtain our expansion of the wavefunction wholly in
terms of the principal series representations.

To this end, the concept of a covariant projection will
be essential. First however, let us define what we mean
by a covariant function.
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Suppose that # is some proper subgroup of SL(2,¢)
and that D"(H) is a representation of H. A function
F'c L is said to be covariant with respect to the »th
representation of the subgroup H if it satisfies the
condition

A =D"("NYF Q) (4)
for all /¢ SL(2,¢) and all k€ H.

Let M be the subset SL(2,c)/H so that any [ ¢ SL(2,c)
can be uniquely decomposed as [ =mh with w1 € M and
he H. Hence, Eq. (4) implies the decomposition

Friy=D(") frim), (5)
which defines f7 with [ = mh.

The function f7 belongs to a subspace L, of L which is
invariant under the action of the operator representation
defined by Eq. (1). That is,

T s Hm) =D (N 7 m "), {8

where I"'m=m’h,, with m,m’€M and h, < H. This
defines a (generally reducible) representation of SL(2,¢)
which is said to be induced by the representation D*(H)
of the subgroup H. Equation (2) is an example of this
construction with the subgroup

Au -
KE{k:(O 6)'6:)\1,7\’[\;,666‘}

as the inducing subgroup.

Generally, a function Fe L will not possess any
particular covariance properties. However, given an
arbitrary function Fe L we can construct a function
Fr < L which is covariant with respect to the 7th
representation of H via the integral operator P* as

Fr()={P"FH)= [d,h D"(R) F(ih). ("M

In this, d;k is a left-invariant measure for the subgroup
H,

If H is compact then the integral in Eq. (7) is guaran-
teed to exist, and the operator P’ is idempotent. For
this reason we refer to {P’F} as the covariant projection
of the function F. If H is noncompact then we can modify
F so that it is modulated by a bounded function with
compact support on the subgroup H, which will
guarantee the existence of the integral in (7).

HI. MATRIX ELEMENTS FOR SL (2, ¢)

It is essential to our purpose that we obtain a basis in
the irreducible space L A which decomposes this space
into orthogonal subspaces, each of which supports a
unirrep of the unitary subgroup SU(2). That is, we want
a basis {92 (z,2*)} in L, which satisfies the two
criterion

{rom Mz, ) =292, (2, 29T, (), (8)
T @or ez, 2%) =210 (2, 2*)D,,, ) ©)

for u < SU{2). Equation (8) defines the matrix elements
T . «nl), relative to the basis ¢ (z,2*), of the

(n, p)th irrep of SL(2,¢). The D%, () appearing in (9)
are the usual matrix elements for the s’th unirrep of
SU(2). A basis satisfying (8) will be an eigenbasis of
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the square of the total angular momentum and its z-axis
projection.

The sum in Eq, (9) is over the index m’ which runs
the range -s, ~s+1,...,s. The sum in Eq. (8) is a
double sum over the indices s’ and m'. These indices
run the ranges |4nl, lzni+1,... and -s, —s+1,...,s
respectively., These limits on the summation indices
are to be understood throughout this paper.

H

The conditions embodied in equations (2) and (9) are
sufficient to determine explicitly® the form of the basis
¢ (z, z%). Tt is

boolz 2*) = (1+2*2) /2008, (w7 (z, 2*)), (10)
where u(z,z*) is the unitary matrix given by
1 ¥
u(z,z*):(1+z*z)'1/2<z 12) (11)

The various elements of the basis ¢7°(z,2*) are
orthogonal to each other, satisfying an orthogonality
relation of the form

Jdzdz* (1 + 2% 2\ ™0 p¥re(z 2%) g7 (2, 2%)

2ni
Ts +1 053 O

{12)

This relation can be directly verified using the ortho-
gonality of the D°, (u).

We can utilize this orthogonality, along with Eqgs.
(2) and (8), to obtain a closed form for the matrix
elements. It is

2s +1
2w
X (8 — Ba)(8* ~ BXz* R ¢ (27,2 *}, (13)

where 17 and ¢ are defined in Eq. (3), and again where
I=(*%) is any element of SL(2,c). The transformed
quantity z’ is again given by the expression (az — ¥}/

(5 — Bz).
When we restrict [ to the unitary subgroup we get
r;‘r)n,s'm'(u) = 635’Dfnm’(u) (14)

for u e SU(2), which is the block-diagonal form we
sought,

T

sm.s’m’(

1= /dz dz* (1 + g*zpmo) pxne(z 2%)

An arbitrary element ¢"(z,z*) of L can be expanded
in terms of the basis (10) as

Pz, 2%) =20A™ o™ (2, 2*), (15)

where the A;‘; are the appropriate complex expansion
coefficients, The sum is again a double sum over the
indices s and m.

Conversely, the set of all such functions (15) forms
the linear space L. That the ¢ (z,2*) are complete
in L, can be inferred directly from their definition in
terms of the complete set of functions, D3, ().

The complex coefficients A7 can be used to form a
spinor (...,A™ . .) which corresponds to the function
defined by Eq. (15). The set of all such spinors formed
from functions in L, also forms a linear vector space
which we will call the associated spinor space.

This spinor space is clearly isomorphic {o L, and

3
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therefore also supports the (z,p)th unirrep of SL(2,c).
That is, the realization of the (1, p)th unirrep of SL(2,¢)
on the associated spinor space is given by

Are — Ame 3T (DA . (16)

sm,s'm’

IV. EXPANSION OF THE WAVEFUNCTION

The wavefunction ¢3,(p) of a free particle with spin s,
z-axis projection w2, nonzero rest mass m,, and four-
momentum® p transforms under a Lorentz transforma-
tion 1:p —’p’:lplT according to®r1°

4 (p) = ¢3(p ZD’ 2 P D), (17)

where w,(I,p) is the Wigner rotation defined by
u (1, p)=0"1p") b (p). (18)

In this, b(p) is the pure Lorentz boost from the rest
frame of the particle to the rest frame of the observer.
It has the representation b(p) = (p/m,)!/? in terms of the
Hermitian matrix p, Equation (17) defines a reducible
representation of SL(2,¢) which is induced by the
subgroup SU(2). It is therefore a special case,

From the wavefunction ¢ (p) we can define a function
X()= = (mo/20) 20 D%, ™) 45,(),

with [ =b(ple, v < SU(2), and with « fixed. This function
transforms according to the regular representation of
SL(2,c) and has no manifest covariance properties, We
can utilize a projection operator £™, of the type defined
in equation (7), to project out that part of x(!) which is
covariant with respect to the subgroup XK. That is,

Q™) ={Px}1) = [d, k" A (R7)x(1k'), (19)

where d;k’ is a left-invariant measure for X, and Am(K)
is the representation of K given by

A () = AT N, (20)
1,£&, and A having been defined earlier.

Decomposing Ik’ as b(p")u’, u’ < SU(2), we can write
(19) as

Qo)== (my/20%) 20 Jdle’ A (R/)Y D5, ('™, (p"). (21)
Now we factor from the right a matrix of the form

expliT/2) 0
= ith 7¢
T 0 exple i7/2) with Te Re (22)
from Ik'=b(p'u’ leaving ik =b(p’Ju, where k has real
diagonal elements. The measure d,k’ becomes a
product of measures d,k d7, and (21) becomes

Q1) == (my/m) 25 [dik 8%(R) DS, 1y ™) 45, (p")  (23)

since the T integration gives 276_ ,, .0, ,.. In this equa-

tion, the relation Ik =b(p')u determines b(p’) and u.

Equation (23) is fundamental, and from it we shall
derive an expression for the coefficients in the expan-
sion of the wave-function. In the Appendix we shall de-
rive the inverse Shapiro transformation from Eq. (23).

If we take [=z<c Z, Eq. (23) gives the projection of
the wavefunction ¢ (p) into the space L,,. Thus, the

583 J. Math, Phys., Vol. 19, No. 3, March 1978

function §™(z) transforms according to Eq. (2) under a
Lorentz transformation. This is easy to demonstrate
using the invariance of the measure d;k .

By parametrizing the rotation « as u(z', z'*)7', with
7" and u(z’, z"*) being given by Egs. (22) and (11)
respectlvely, we can make use of the identity
ulz’,z2'*)=2z'k(2’,2'*), where

1 — =Tk
k(zl’zl*)z(l+ZI*ZI)-1/2(O 1+;’*z')’ (24)

to write Ik = zk =0 (p’)u in the form b™*(p")z=2z'k,, with
=k(z’,2"*)7’k™ and with I =z< Z. Furthermore, since

Ame(R (2!, 2'%)) = (1 + gk g!)lie/27 (25)

we can utilize Eq. (10) to write (23) as
1 d P, ’ ’ ’
> f Ao (27, 2 (p

Army m P}

Qm(z)=

), (26)

with I chosen to be z€Z. To obtain this last equation
we have also used

-1 &p
dk= i

7
- 4;';20 P(', @)

which is calculated from zk =b(p")u.

Now @™ is covariant with respect to the subgroup XK.
We can therefore choose [ =z ¢ Z and expand @"(2) in
accordance with equation (15) since @™(z) is an element
of an. Having expanded @™(z) in this manner we can
use the orthogonality of the ¢ (z,z*) to isolate the
expansion coefficients. We obtain

3
np - fdp{zs +.1/d2d2* (1+Z*Z)Im(p)
47rm0 oy 27

><¢)*”"(z Z* A""(k ) ;;'(Z’,Z’*)}%'(ﬁl); (28)
with b p")z=2'%,,.

Comparing Eq. (28) with Eq. (13) we see that the
expression in curly brackets is the matrix element
T (b{p)). Thus, we can write (28) in the final form

sm,sm’

This equation gives us the recipe for calculating the
projection of the wavefunction onto any of the irreduc-
ible subspaces L, . It is particularly important to us
because our expansion of the wavefunction will contain
the A as expansion coefficients.

Anp —

BN ). (29)

To obtain the expansion of the wavefunction we pro-
ceed in a less direct fashion than we did above., Using
the function @"(l) defined by Eq. (19) we form the
function

P Q%)= [du' D%, (") Q™ (lu’) (30)

which is covariant with respect to SU(2). In this, du’

is an invariant measure over SU(2), and the D? ,(x’) are
the usual SU(2) matrix elements. The index a will again
be fixed to the value ~#/2 by an integration over the
z-axis rotations.

Using the wavefunction ¢,(p) we can define another
function

X, (1) =20 D5, ™) 85,() (31)
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with I =b(p)u. This function is also covariant with
respect to SU(2),

Now x¢, and {PS @™} both transform according to the
regular representation of SL(2,¢) and they are both
covariant with respect to the sth unirrep of SU(2).
Hence, x5,(b(p)) and {P5_Q"} (b(p)) both belong to the
unitary, reducible subspace L, defined by Eq. (17) so
that a mapping from one to the other must exist.

The covariance properties of x%, and {P% @™} with
respect to SU(2) and the Lorentz covariance of the
mapping restrict the mapping to the form

X (b)) =23 [ dp am{pPs @ Hb(p)), (32)

where the constants o™ are the undetermined part of the
kernel of the mapping.

Since the regular representation of SL(Z,c) is unitary,
the expansion (32) need only include the unitary, non-
equivalent representations of the principal series.

That is, ¥,/ dp is restricted to the range n < Integers,

p € Reals with pe (0,=),
Using (30) and (31) in (32) we get the relation
gern(p):E fdp a""f du’ D3 ()@ (b(pu’) (33)

between the wavefunction and its irreducible compon-
ents. This relation is fundamental, and from it we shall
obtain the expansion of the wavefunction in terms of the
matrix elements (13). In the Appendix we shall derive
the Shapiro transformation from Eq. (33).

To evaluate the u’ integration in Eq. (33) we para-
metrize u’ as u’=u(z’,2"™)7" = 2’k{(2',2'*)7’, where 7’
and k(z’,z'*) are given by Egs. (22) and (24),
respectively, This parametrization transforms
b(p)u’ = zk (which defines z and k) into b™*(p)z=2'k,,
with &, =k(z’,2)7'k™" so that (33) becomes

.(p) =2 fdp a™ [ du(z’,z*)dT D5, (u(z', 2"*) 1)

X AR(TR™ 2! 2 %)k ,) @™ (2). (34)
To write this equation we have utilized the covariance
of @,
The 7' integration can be performed directly, giving
2wo, and the parametrization u’ =u(z’,2'*)7" gives

_ dz'dz
T A%+ 2k )P

ymn/22

dulz’,2’*) (35)

by the usual method. Using this, along with Egs. (25),
(10), and the expansion (15) for @™ we can bring (34)
into the form

¥ (p) =20 dp@mi)y a2 i2 AL, [ d2 dz'*
n s m’
X pEre(z!  2™*)am (ke oIt (2, 2%), (36)
with b(p)z’ = zk7}.

Finally, invoking Eq. (13) for the matrix elements
{with Im(p) = 0] gives the desired expansion

) =2 [dp(2s + 1) am ) T, (b7 (PN AT,
(37

This expansion, as well as the expression (29) for the
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expansion coefficients, is Lorentz covariant. This is
easily demonstrated using Eqs. (16) and (17).

To calculate the o™ we eliminate 3% (p) between Egs.
(29) and (37). This gives the orthogonality condition

e[ av ) »
2 P, [4717710(23 m 1)] Tt s O OIS B 0))

(38)
=6,.0(p-p8,.0, .,
from which a lengthy calculation leads to the result
a™ = (n® + p?)/dnm,. (39)

For the details of this calculation see Ref, 2.

V. CONCLUSION

We have shown that by relating functions that trans-
form according to representations of SL(Z,C) which are
induced by two different subgroups we can obtain an
expansion of the wavefunction for a free, massive
particle with spin s in terms of the matrix elements
for the unirreps of the principal series of SL(2,c). This
expansion, which is given explicitly by Eqs. (37) and
(39), is obtained by means of a mapping in the space
of SU(2)-covariant functions, Its inverse, Eq. (29) for
the expansion coefficients, is obtained by projecting out
that part of an SU(2)-covariant function which is
covariant with respect to the subgroup K. In the
Appendix we have shown that these equations are equi-
valent to the Shapiro integral transformation [Eqgs.

(A6) and (A8)] for the wavefunction.

Our equations have several advantages over the
conventional form of the Shapiro transformation. One
advantage is that our equations do not involve an
integration over SU(2). Another advantage is that they
are expressed in terms of more concrete quantities
than are Eqs. (A6) and (A8); namely, the matrix
elements as opposed to the elements of the irreducible
spaces.

These things lend our equations a very compact and
symmetric appearance with the advantage that all of
the momentum dependence is grouped together in the
matrix elements.
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APPENDIX

In Sec. IV, we obtained the expansion (37) and
its inverse (29) from Eqgs. (33) and (23), respectively.
Here we will show that Eqs, (33), (23), and (39)
comprise the Shapiro integral transformation for the
wavefunction of a free, massive particle with spin s.

We begin with Eq. (33) in which we let b(pu’=uk,

which defines « and %k to within a rotation of the form
(22). This gives

() =2 f dp[n————;: nf] f ' DS ()@ (k)
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where we have used Eq. (39) for the a™, We now
utilize the covariance of @" with respect to the sub-
group K, and we set o= ~n/2 to obtain

Ulp) =22 d"[ﬁﬁ: ] fdu'Dfn,-n/z(u’)A""(k")Q""(u)- (a2)

The relation b(p)u’ =uk gives the results
du’ = {(PO -P. N)/mo}'zdu (A3)
and
A (e) = exp(inT/2){(P, - P * N)/m}*-ie/® (A4)
with #’ =7 and with
N={-2Re(ur), 2Im(uv), w*u —v*v} (A5)

being the unit vector obtained by rotating the z-axis
vector {0, 0, 1} with the rotation

u= (_‘;* :*)e SU(2).

Using these resuits, Eq. (A2) is readily manipulated
into the form

n2+p2 (po_p -N) =1=(ip/2)
o= ful] fuf )

0 My
XD%, o) Q). (46)

To obtain the inverse to this we set [ =« in Eq. (23)
to get

Q) == (mo/m2 [dik AR DL, 1, () (AT)
with b(p)u=uk. Utilizing Eq. (A4), along with

-1 &°p
WD P
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we bring (A7) into the desired form

an(u) =—1—Ef££{w}(ip/2)-1

4mm, mJ P, my
XD, e 0. (a8)

Equation (A6}, together with its inverse (A8),
comprise the Shapiro integral transformation in a form
similar to that given in Ref. 3.
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Various sets of conditions are presented which a reasonable theory might be expected to satisfy, in
attempting to explain the interaction of the gravitational and electromagnetic fields. It is shown that each
of these sets leads inevitably to the Einstein~Maxwell field equations. Attention is also drawn to the fact
that these equations must be modified if it is furthermore demanded that Maxwell’'s equation in flat

space-time be an exact solution of them.

1. INTRODUCTION

It is well known that, in regions devoid of sources,
the interaction of the gravitational and electromagnetic
fields {(characterized by a metric tensor g;; and a co-
variant vector ¢;, respectively) is assumed to be
governed by the Einstein—Maxwell field equations

aG = b[F"Fi, -} ¢ ¥ (F™F, )] (1.1)
and

FM| =0, (1.2)
where

Fig=di~ 4565 (1.3)

and a,b, are constants. Here G¥/ is the Einstein tensor,
the vertical bar and comma denoting covariant and
partial differentiation respectively. It is also well
known! that the identity (1.3) is equivalent to

(:habCFabIC:O, (1.4)

so that the full set of the Einstein—Maxwell equations
is either (1.1)—(1,3) or (1.1), (1.2), and (1.4). This
system of equations is to be solved for the pair

(gi;, Fy) subject to appropriate boundary conditions,

In flat space—time, i.e., when

-1 0 0 0
0 -1 0 0

(gi)=@m)=\ 0 0 -10]’ (1.5)
0o 0 0 1

it is obvious that (1.2) and (1. 3) [or (1.4)] reduce pre-
cisely to Maxwell’s equations, these being experimen-
tally confirmed to a high degree of accuracy. Indeed,
it is for this reason that (1.2)—(1.4) have been pro-
posed as acceptable field equations in curved space—
time.? Although the justification for (1.1) does not
enjoy a similar firm experimental foundation, there
exist a variety of mathematical arguments’® in support
of it, perhaps the primary one being based on the
identity

[aGH — b(FI*FI L g YF™SF )],
=bF L FM 4+ (b/4) g ey, FRe™CF L,

which clearly indicates that the divergence of (1, 1)
vanishes whenever Maxwell’s equations (1.2} and (1. 4)
lor (1.3)] are satisfied.?
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However, although it is true that if g;; =n,; then
(1.2) and (1.3) reduce to Maxwell’s equations in flat
space—time, it is also true that the syslem of equa-
tions (1.1)—(1. 3) does not reduce to Maxwell’s equa-
tions in flat space—time unless b=0. More precisely,
the pair {n;;, F,), where F,, is a nonzero solution of
Maxwell’s equations in flat space—time, is an exact
solution of (1.1)—~(1, 3) if and only if b=0. [This is
verified by substituting (1.5) in (1. 1) and deducing that

b[FHFY, - i (F™F, )] =0,

from which it can easily be shown’ that either b=0 or
F,;=0.] Consequently, if we demand that the experi-
mentally verified Maxwell’s equations be an exact solu-
tion of (1.1)—(1.3) in flat space—time, then (1.1)
reduces to

G =0, 1.7

and the electromagnetic-gravitational interaction would
then be governed by (1.7), (1.2), and (1.4), i.e., there
would be no electromagnetic contribution to the gravi-
tational field equations. The sef of Eqs. (1.7), (1.2),
and (1,4) we shall call the modified Einstein—Maxwell
equations.

In this paper we seek alternative equations to (1.1)—
(1.4), which are to be obtained from reasonable as-
sumptions. Here five different approaches are taken
to this problem, and we arrive at the same conclusion,
viz., veasonable assumptions lead inevitably fo the
Einstlein—Maxwell equations {with cosmological term).
Consequently, if to these reasonable assumptions is
added the condition that the corresponding field equa-
tions should admit Maxwell’s equations in flat space—
time as an exact solution, we would be forced to con-
sider the modified Einstein—Maxwell equations.® As
far as we are aware, there is no classical experimental
evidence, either in support of or in conflict with, the
Einstein—Maxwell equations, whether modified or not.

2. APPROACH 1: ALTERNATIVES TO (1.1),
RETAINING (1.2) AND ASSUMING (1.3)

In this approach we shall seek an alternative equation
with which to replace (1.1), while still retaining (1. 2)
and (1. 3). In order to attempt to find such an equation,
to be provisionally denoted by

Bl =0, (2.1)
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we shall be concerned with Athe following problem. To
find all tensor densities B*/ satisfying:

{a) BY is a concomitant of g,, (and its first and
second partial derivatives) together with F, i.e.,

BY =BY gy Qab,c 3 8ar, ot s Fan)s 2.2)
where F,, is defined by (1. 3);
(b) B¥ is symmetric, i.e.,
BY = Bit; 2.3)

{c) The divergence of B’ vanishes whenever
Maxwell’s equations (1.2) and (1. 3) are satisfied in the
sense that

BY,, =aitF,J 2.4)

where a# is an unspecified tensor density for which

a“‘:aih(gab;gab,c;gab,cd;gab,cde;Fab)' (2.5)

The motivation behind (2. 2) is (1.1), while (2. 3) is
motivated by the fact that the “Einstein equation” (2.1)
is usually assumed to be symmetric, Condition (2. 4)
is motivated by comparison with (1, 6), while (2.5) is
suggested by (2. 2) and (2. 4).

We introduce the two tensor densities

aBY ijia_ 0BY
B jab,ed and Bn.ub — (2' 6)
agab,cd ’ a};‘ab ’
which will then satisfy the following identities’:
B!j,ab,cd Bjt,ab ed __ BU ba,ed Btj,ab de . B'J cd,ab

Bij;ab, cd +Bij;ad,bc+Bij;ac.db =0
3

Bijiad — Bitiab _ _ piijba

These identities will be used frequently in the sequel

without specific mention.

When written out in full, Eq. (2.4) reads
Bii;ab, cd gab,cdj + ZBij;abd)a’bj

aBY B
+ o gab,ﬂj t o ag

+T,}BM
agab, < gab, i

= O’ihg’ik[wh,ki = Puni = ThiFop =~ Fk?Fha]' 2.7
If we differentiate (2.7) with respect to ¢, ,; we find

Bit:rs _+_Bis; rt ___O,rrgst *Olisg O[itgrs (2 8)
In (2. 8) we interchange ¢ with s, and ¢ with ¢ to obtain
2.9)

Bst;ri +Bsi;rt:asrgit__ %asigrt - %O(Stgﬁ

and

Bit:rs 4+ Btsiri :atrgsi - Qtsgn - h s (2. 10)

Adding (2. 8) and (2.9) and subtracting (2.10), we see
that

2Bis;rt:airgst + asrgit - atrgsi + %(Ol“ _ ait)grs
+ %(Otts— ast)gr{ _Disgrt
)
(2.11)
where
Diszé(ais + asi).
BR7 J. Math. Phys., Vol. 19, No. 3, March 1978

In view of the fact that the left-hand side of (2.11) is
skew-symmetric in v we thus have

Dirgst +Dsrgit - ZDtrgsi +Ditgrs +Dstg7i - 2Disg'rt :0’
from which it is easily shown that
Dis=0,
i.e.,
(2.12)

s — _ aSi_

From (2.11) and (2. 12) we thus find

ZBis;'rt — Olzrgst + asrgit + a’rtgst +- aﬂgrs + atsg"‘i
(2.13)
If we multiply (2, 13) by g,; we see that
ats =Zpisirt

2.14)

trom which, by (2.2) and (2.5), we conclude that o¥ is
independent of g, 4., 1. €.,

irs

oY =a(gu; gy, c s &avyca s Fap)- (2.15)

By virtue of the fact that

a(Bis;rt)
9F,

it is easily established from (2. 13) that

is;rizad _ pisiabirt
Bisirtiab = = Bisiairt

xr.nbgst + O,Sr;nbgit + O,rt.nbgsi + ati;abgrs+ ats;abgri
— aza,rtgsb + O,sa;rtgib + aab:rtgsi
+ abt,rtgas + ubs;rtgai (2 16)
N .
where
0{ir;ab — datr
oF,
If we introduce the tensor density
br — ybsirt
o = gbsir T
and multiply (2. 16) by g,,, we find
g fried aitz;br + ablser O,ab;tr,_!ibrgaf uargib

2.17)

By multiplying (2.17) by g;, and g,, we may conclude
that

lei=>\gai, (2. 18)
where A is a scalar density and
A=Mgab ; Zab,c } Sab, ot 5 Fap)
When (2, 18) is substituted in (2.17) we see that
3a|‘r;ab + aiu;br+ abitar 4 aab:ir:h(gbrgai _gargib) (2 19)
g . .
In (2.19) we cycle on a b i to find
air;ab 4 aribi + qbrite

(afaibr 4 gbliar 4 gabiiry (2, 20)

If we substitute the right-hand side of (2. 20) into the
left-hand side of {2.19), we then have

iriab aribi briia _. br ai
2a -a -« =Xg

—g¥git), (2.21)

In (2.21) we interchange a and ¢, and add the resulting
equation to (2. 21) to find

3(aomiie 4 azr.ab) —X(Zgb' ai —g"'g“ __,g'fgb“), 2.22)
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In (2. 22) we interchange 7 and » and subtract the re-

sulting equation from (2. 22) to find
z(yir;ab _ aar;bi _ O(ai;rb — A(gbrgai _ga'rgbi)

A comparison of the latter equation with (2.21) shows
that

aai:br:abr;ai
b4
which by (2.20), implies
qiaidr 4 gbisar 4 briie (), (2.23)
When (2.23) is applied to (2. 19) we have
air;ab=§)\(gb"gai—gargib). (2.24)
In view of the fact that
O,ir;ab;cd: _a_(ﬂ”;ab) — 0,ir;z:d;al‘;
OF 4 ?
it is easy to show that (2. 24) implies that

A

7F, =%

i.e.,

A=MEo 5 Zab, 5 &ap, ca)e (2.25)

By virtue of {2.25), Eq. {2.24) may be integrated to
yield

alr =2aFir 4 gin) (2.26)
where BT is a tensor density satisfying

BiT=~p, (2.217)
and

BT =P8 s Guv, e Gav, ) (2. 28)

We now return to (2. 7) and differentiate it with re-
spect t0 g, o4, noting (2.15), to find
Bij;ab,cd +Bid;ab,jc+Bic;ab,dj =0, (20 29)

The latter equation, together with (2.3), implies in the
usual way, ® that

Bij;ab,cd:Bcd;ab,ij
and

Bij;ab,cd:Bij;ab, Cd(grs,;Frs)' (2-30)
From (2.29) it is clear that

(Bifirsituiab, ol | Bidivs;tuab,ic | gicirs; tu;ab.di)gir =0,

which, by (2.14), (2.25), (2.26), and (2.28), implies
that?

)\:a\/;g‘, (2. 31)
where a is a constant, From (2, 29) it is also clear that
(Bij;rs;ab,cd+Bid;7s;ab,jc+Bic;rs;ab,dj)gi :0,

’
which, by (2.14), (2.26), and (2.31), gives rise to
st;ab,cd + Bsd;ab,jc + Bsc;ab,dj =0, (2. 32)

However, in view of (2, 28) and the fact that 8% is a
tensor deansity, (2.32) is equivalent!? to

g, =0. (2. 33)
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Elsewhere, 11 it has been shown that (2.27), (2.28),
and (2. 33) imply that

B =0, (2.34)
From (2.26), (2.31), and (2. 34) we finally find

ali=pVg Fii, (2.35)
where b is an arbitrary constant,

We now introduce the tensor density

AV =BY +pVg [FIFI, — Lo (FPF,)]. (2. 36)
It is clear that A%/ is a tensor density for which

A =AY (g 8,0 Bapyod s Far)s (2.37)

Al = ATE (2.38)
and, by virtue of (2.4) and (2. 35),

AY =0, (2.39)

Differentiation of (2.39) with respect to ¥, ,, [compare
2.2), 2.4), (2.7, (2.8) with (2.37) and (2. 39)] yields

Aftirs ¢ Alsive g

which, together with (2. 38), implies
Aitirs—,

i.e.,
Ab =Aij(gub;gab,c;gab,0d)' (2.40)

However, all tensor densities satisfying (2.38), (2.39)},
and (2. 40) have been constructed, ¥ the result being

A =aVgGli+eVg gh, (2. 41)
where a,c are constants. A comparison of (2. 41) with

(2. 36) establishes the following!® theorem,

Theovem: The only tensor density which satisfies
(2.2)—-(2.5) is

BY =aVEGY +cVE g - bVE P, L g TR,
(2. 42)

Consequently, (2.1), (1.2), and (1. 3) are the
Einstein—Maxwell field equations (with cosmological
term).

3. APPROACH 2: ALTERNATIVES TO (1.1},
RETAINING (1,2) AND ASSUMING (1.3)

Some authors' have suggested that the energy-
momentum tensor should be asymmetric which would
be inconsistent with (2. 3). Guided by this observation
we shall again seek an alternative to (1. 1) {while still
retaining (1.2) and (1. 3)], to be denoted by

Cijzo, (3.1)

where C! is a tensor density satisfying the following
conditions:

@) C¥=C"(gu;8as,c38av,ca’s Fan)s (3.2)
where F,, is defined by (1. 3);
(b) Ci,,=MF7, (3.3)
and
Cit, =uF,, (3.4)
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where A, p*" are tensor densities, unspecified except
for the conditions

M= N g0 Gabyc s 8ab, ot  Bav, cte s Fan)s (3.5)
and
pit=pit(g, 3gab,c;gab,m;gub,cde;Fab)- (3.6)
If we introduce the tensor densities:
BY =3(CY + %), DY=4(CY-C),
(3.7

afh = %(Kih + “lh), ﬁih 2%()\” - uih)
we see that (3, 2)—(3. 6) imply that B/ and a'* satisfy
(2.1)—(2.5), in which case BY and @'* are completely
determined by the theorem of Sec. 2. The problem of
determining C¥ satisfying (3.2)~—(3.86) thus reduces to
finding all D¥ satisfying

D“:Dij(gab;gab,c;gab,cd;Fab)’ (3.8)
DY =_ D, (3.9)
D”lj:Bthhjlj ’ (3.10
where 5% is a tensor density and
Bih:-Bih(gab;gub,c;gub,cd;gab,cde;Fab)' (3'11)

In a manner similar to that from which (2. 8) was ob-
tained from (2.2)—(2.5), we find from (3. 8)—(3.11)
that

Dij;ab +D"b‘“j=B""g"’-%B“’g“—-%B“g"“. (3. 12)
We now consider the tensor density E */** defined by
Eijkh:Dij;kh +Dki sik +Dhi;k]'
+Dik;ih+D1h;ki +th;i!. (3.13)

By virtue of (3.2) and (3.9) it is easily seen that
E*'* is totally skew-symmetric in ijkk, in which case

E ijkh:.},eijkh’ (3. 14)
where 7 is a scalar and
Y=Y(8u} a5 Zavycas Fav)- (3.15)

However, (3.13) can also be expressed in the form
Eilikh _gpiiskh 4 (Dki;ih +Dhi;!k)
+3(Dhi;kj +Dji;kh) + (Djk;ih +D1i:kh)
+ (Djh;ki +Dji;kh) e (th;i.f +Dih;kj).

To each of the terms in brackets on the right-hand side

of the latter equation we apply (3. 12) to find

GDij;kh:El'jkh _ %gthij + %gik(ﬁhi - 431)!) +%gjhﬁik
+3g* @B - 28M) - B M + 5% . (3.16)

Multiplication of (3.16) by g,,, attention being paid to
(3.14), leads to

B2, DI = (138% + B4 + Bg*) /2, (3.17)
where
B:g”B” =6(gab ;gab,c ;gub,cd ;gab,cde ) Fab)' (3. 18)

However, from (3.12), we see that
nghD”; kR __ gﬁik s

which, when combined with (3. 17), gives rise to
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ﬁih — _‘11_ Bgik .

From the latter, (3.14) and (3. 16), we thus have
6Dij;kh :.},eijkh + %B(gjhg‘k _gikghi).

In view of (3. 8) and the fact that

iiikhsab _ pyiisabskh
Dt = Difiabirh

(3.19)

it is not difficult to show that (3.15), (3.18), and (3.19)
imply
B=B(8a ; &av,c  &ab, ct) (3.20)
and
Y=Y(guw s 8ab, ¢ ;gab,cd)'
By virtue of (3.19) and (3. 20), (3.10) now implies
Dij;ab,cd +Did;ab,jc +Dic;ab,dj :0,
which when applied to (3.19) and (3. 20) gives
B=8kVg, a=127, (3.21)

where k, 7 are arbitrary constants, Substitution of
(3.21) in (3.19) and integration thus yields

DY =}relitep, +ikVgFY +EY, (3.22)
where E¥ is a tensor density,

E”:E“(gab;gab,c;gab,cd), (3-23)

EY=_ B, (3.24)
and

EY;=0, (3.25)

the latter following from (3.10), (3.19), (3.21), and
(3.22). However, (3.23)—(3.25) imply® that
EY =0,
in which case (3.22) reduces to
DY =27l +2kVgFY, (3. 26)

We are now in a position to prove the following
theorem,

Theovem: The only tensor density C* satisfying
(8.2)-(.4) is
Cl=aVgGH+cVggh -bVg[Fi*Fi,

‘%g”(F'sFrs)]"'Te‘“thh""“/EF“- (3.27)

Furthermore, the field equations (3.1), (1.2), and (1. 3)
are equivalent to the Einstein—Maxwell field equations.

Pyoof: Equation (3. 27) is an immediate consequence
of (2.42), (3.7), and (3.26), Thus we need only show
that (3.1), (1.2), and (1.3) are equivalent to the
Einstein—Maxwell field equations.

From (3.7) we see that (3.1) is equivalent to

BH =0 (3.28)
and
DY =y, (3.29)

Equations (3, 28), (1.2), and (1.3) are clearly equivalent
to (1.1)—(1.3) so we restrict our considerations to
(3.29), which, by (3.26) implies that
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TetRE, = _kVgFii, (3.30)

If we multiply (3.30) by F;; and observe the identity®®
€HRRE,, Foj=36i(e®F,, Fy,),
we find

104 (re® N Fy Fog) =- KV g FHF (3.31)

ej s

from which we deduce that
TeDF , Fog=—kVgFYF, .

Substitution of the latter in (3. 31) implies that
kVgFUF, - ;0L (F®F,)]=0,

from which we conclude that
K=T=0

(if F;, is not identically zero) in which case (3.29) is
identically satisfied.

4. APPROACH 3: ALTERNATIVES TO (1.1),
RETAINING (1.2) AND (1.4)

As has been pointed out elsewhere!’ the existence of
magnetic monopoles would have a drastic effect on the
equivalence of (1.3) and (1.4), because, in the presence
of sources, (1.1), (1,2), and (1.4) are all augmented
by appropriate source terms, Under these circum-
stances, (1.3) is no longer a consequence of the
augmented (1, 4), which immediately implies that we
cannot infer the existence of a vector field ¥; for
which (1. 3) is valid.

Guided by these comments we shall again seek an
alternative to (1.1), to be denoted by

HY =0, (4.1

where H¥ is a tensor density satisfying the following
conditions:

@) HY =H"(g4 ; 8w, c3 8w, 013 Fas)s “.2)
where F,, is any antisymmetric tensor field, i.e.,
Fab:_Fba; (4.3)
(b) HY =g, (4.4)
(C) H”lj:‘/Ea“thlj+Bih€hjabFablja (4-5)
where af* Bi, are tensors and
aih:aih(gab;gab,c;gab,cd;gub,cde;Fab): ( )
i 4.6
Bih :B,h(gab 58ap,cr8ab,cd s Sab, cde 7 Fab)‘
[Compare (4.5) with (1.6). ]
Written out in detail, {(4.5) reads
aHY
H”'abFab.j +H”'ab'Cdgab,cdj + o Bav,ci
gab,c
aHii .
* gg;— Sabyi ~ Fn;HM
:\/:_g"aihgijhk’j+Bih€hjabFab]j. (4-7)

Differention of (4.7) with respect to F,, ; gives rise to
Hij;ab:%@aiagbj_%féaibgai_i_ﬁihehjab, (4' 8)
which, by (4. 4) implies that
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Vgalaghi _Vgaihga +2p1, ehiav
=Vgaltgh _Vgaltgs + 257, ehiv (4.9)

If we multiply (4.19) by g,; we find
Vgaie=_ %G(gbiabj)gai + B,y ehin

from which it follows that
@aia:ﬁjheniaj. (4.10)

This equation clearly implies that @ is skew-
symmetric. We now return to (4.9) and multiply it
by €,;. to obtain, by virtue of (4.10),

ﬁir: - ﬁri,

which, when taken in conjunction with (4.10), gives
rise to

Be=—1Vge

(4.11)

1ars@'? (4.12)
From (4.8) and (4. 12) we thus find
Hi5® = L g(aiaghi _ qivgai
+abigti _ ghagii 4 giaghi) (4.13)

This equation is formally the same as (2.13), and it is
now possible to parallel the arguments presented in
Sec. 2 to establish the following.

Theovem: The only tensor density which satisfies
(4.2)—(4.6) ist®

HY =aVg Gl +cVggt b Vg F"F,, - 3084(F F,)].
(4.14)

Consequently, (4.1), (1.2), and (1.4) are the
Einstein—Maxwell field equations.

5. APPROACH 4: ALTERNATIVES TO (1.1),
RETAINING (1.2) AND (1.4)

For the reasons mentioned in Secs. 3 and 4, we shall
now solve the following problem. Find all tensor densi-
ties K/ which satisfy

(a) Kij:Kij(gab;gab,c;gab,cd;Fab)’ (5.1)

where F,, satisfies (4. 3);

() K4, =Vg\hp,d .+ eMPF,;

and (5.2)
Kjilj =Yg “thhjli +EH, eMUF, lis

where A% nf,, pi*, tf, are tensors, all functions of
g, and its first three partial derivatives together with

Fy, e.g.,

RS )\ih(gab 38ab,c38ab,cd s Bab,cde s Fab)'
If we introduce the tensors:

H“:%(K”“FK”), J”:%(K”-—Kji)’

ath= (A4 pih), Bih = %(nih + gih)’

pif= L(Ah o pin) 6, = Lt - £,
we see that (5.1)—(5. 3) imply that H*/, o* g% satisfy
(4.2)—(4.86), in which case they are completely deter-
mined by the theorem of Sec. 4. The problem of deter-

mining K/ satisfying (5.1), (5.2) thus reduces to find-
ing all J ¥ satisfying

(5.3)
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Jij=J“(gab;gab,c;gab,cd;Fab)’ (5.4)
JH=_git, (5.5)
and
JH =V g ptFy |+ 0 eNOF, . (5.6)
From (5.6) we find
Jic;ab:%E(piagcb_pibgca)+9ih€ncab, .7
which, by (5.5), gives rise to
L7 (pleg® _ pitg @ + pg i _ pobgia)
= 0f, echab 4 g, e ihad (5.8)
Multiplication of (5.8) by g, yields
4Vgpit—Vg(gep®) g™ =20,,', (5.9)
from which we obtain
3V €51 P™ = (0,5 0,,)/2.. (5.10)
However, by multiplying (5. 8) by g.,€,3:4, We find
$VE €100 =85, 0% — 46, . (65.11)
A comparison of (5.10) and (5. 11) yields
0 =30%8sr ' (5.12)
which, when substituted in (5.9) implies that
pi"=§pbbgi“. (5.13)

If we substitute (5.12) and (5.13) in (5.7) we obtain an
expression which is formally equivalent to (3.19). It is
thus possible to parallel the arguments presented in
Sec. 3 to establish the following.

Theovem: The only tensor density K ¥/ satisfying
(5.1) and (5.2) is
KY=aVgGi+cVggh-bVg[FF,
— S (FTF, )]+ Tel™E, +xVgFY,  (5.14)

where a, b, ¢, 7,k, are constants, Furthermore, the
field equations

K¥=0

together with (1.2) and (1. 4) are equivalent to the
Einstein—Maxwell field equations.

6. APPROACH 5: ALTERNATIVES TO (1.1},
(1.2} AND (1.4)

In this section we shall we shall find all tensors
L, At B! for which:

(a) LY :L“(gab 38ab,c18ab, cd 3 Fap),s

AizAi(gab;gab,c;gab,cd;Fablc)’ 6.1)

B =B (2w ; &b, c 1 8w, cas Fapic)s
where

Foyp==Fy; (6.2)
(b) If Ry, =0, then A'=Vg F¥; and B* =¢'®°F, | ;

(6.3)

(c) A%;=0 and B'j;=0; (6.4)
(9) L“l;‘ = aihAh +p, B, L’ 1i =7, A"+, B (6.5)
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where aot,, 8',, v'y, X, are tensors and are functions
of g,s and F,,. The source-free field equations are then
assumed to be of the form:

Li=0, A'=0, B'=0. (6.6)

Condition (b) is motivated by the experimentally
accepted validity of Maxwell’s equations in special
relativity. Condition (c) is motivated by, and inter-
preted as, conservation of charge, both electric and
magnetic. Condition (d) is motivated by the require-
ment that the divergence of LY should vanish whenever
“Maxwell’s equations” A*=0, Bf=0, are satisfied
[compare (6.5) with (1.6)].

If we define

MY = 5L + L) =M, 6.7)
Nij=é(Lij_Lfi)=_N]‘i. (6. 8)
aih = é(“ih + Yih), bih = "é(ﬁin + )‘ih),
i1y i i _ ini i (6.9)
c ;,25(0‘ halid h), d hZE(B A h)’
then (6.5) implies
MY, =a*, A" +b%, B", (6.10)
MY =c' AP +dt, B, (6.11)
while (6. 6) is equivalent to
MY =0, A'=0, B'=0, (6.12)
and
NY =0, (6.13)
1t is known!? that (6.3), (6.4), (6.7), and (6.10)
imply that
Al=Vg F¥;, B'=€¢F,., (6.14)

while (6, 12) are precisely the Einstein—Maxwell field
equations. Furthermore, by applying the analysis of
the previous section, we see that (6.8), (6.11), and
(6.14) imply that (6. 13) gives no further conditions.
We thus have the following theorem.

Theovem: If conditions (6. 1)—(6.5) are satisfied,
then (6. 6) are precisely the Einstein—Maxwell field
equations {1,1), (1.2), and (1.4).

ACKNOWLEDGMENT

I would like to thank my colleagues, Hanno Rund and
Marlan O. Scully, for valuable discussions. This work
was supported in part by NSF MCS 76-06680 and
NRC AT342.

!See, for example, D. Lovelock and H. Rund, Tensors, Dif-
fevential Foyrms and Vaviational Principles (Wiley-Intersci~
ence, New York, 1975),

’A. Trautman, “Foundations and Current Problems of Gener-
al Relativity” in Lectures on Geneval Relativity (Prentice-
Hall, Englewood Cliffs, New Jersey, 1964),

5D, Lovelock, Proc. Royal Soc. Lond. A 341, 285 (1974);
Gen, Rel, Grav. 5, 399 (1974); Quaest. Math, 1, 101 (1976);
J. Math, Phys. 18, 1491 (1977),

47.L. Synge, “Introduction to General Relativity” in Relativ-
ity, Groups and Topology (Gordon and Breach, New York,
1964), p. 87,

David Lovelock 591



%See Ref, 1, p. 326, This conclusion is not affected if the
cosmological term is included in the left-hand side of (1,1).
fSome comments on the consequences of adopting the modified
Einstein—Maxwell equations are in order. Firstly, (1.7)
does not imply that there should never be an energy-momen-
tum tensor on the right-hand side of (1.7), merely that in the
electromagnetic-gravitational interaction case the conven-
tional electromagnetic energy-momentum tensor is absent,
Secondly, there is a solution of the modified Einstein—Max-
well equations which could correspond to a spherically sym-
metric, charged, massive body at rest at the origin [and
would be the counterpart of the Reissner—Nordstrom solution
of (1.1)—(1.3)], viz., the Schwarzschild solution with the
classical ¢;. Thirdly, the modified Einstein—Maxwell equa-
tions would imply that the trajectory of an uncharged test
particle is unaffected by the charge of the source, in marked
contrast to the situation predicted by the Einstein—Maxwell
equations, Finally, if the modified Einstein—Maxwell equa-
tions are correct, then attempts at a unified field theory
would have to be abandoned,

"See Ref, 1, Chap, 8,

592 J. Math. Phys., Vol. 19, No. 3, March 1978

835ee Ref. 7.
°D. Lovelock, Arch, Ration, Mech. Anal, 33, 54 (1969),

10p, Lovelock, Aequat, Math, 4, 127 (1970),

Hp, Lovelock, J, Math, Phys, 13, 874 (1972).

125ee Ref, 11,

13This theorem could also be established by appealing to the
significant work of I, M, Anderson, “Mathematical Founda-
tions of the Einstein Field Equations,” unpublished Ph,D,
thesis, University of Arizona, 1976,

10, Costa de Beauregard, “Translational Inertia Spin Effect,”
in Perspectives in Geometvy and Relativity, Hlavaty
Festschrift (University of Indiana Press, Bloomington, 1966),
p. 44; D, W, Sciama, Proc. Cambridge Philos, Soc, 54, 72
{1958),

15See Ref, 11,

163ee Ref, 1, p. 326,

11y Schwinger, Phys. Rev, D 12, 3105 (1975),

18This theorem is also true if (4.2) is replaced by H¥
:H”(gab':gab,c;gab,cd;Fab;Fab,c)°

195ee Ref, 3, fourth reference.

David Lovelock 592



Multidimensional wave radiation from a source with
Gaussian time variation and Gaussian-approximated
distribution about a spherical sheet

Lim Chee-Seng

Department of Mathematics, University of Singapore, Singapore
(Received 16 February 1977)

This paper concerns the wave field of a source with the title-indicated space-time function which,
additionally, possesses an arbitrary directional variation. The multivariate solution obtained comprises an
estimated error plus peak-induced spherical harmonics that are hyperconically confined, i.e., bounded by
diverging and converging spherical fronts. Such fronts are not necessarily singular. Compliance with the
radiation principle ensues, through contour integration, from Cauchy initial conditions. For an odd
number of spatial dimensions, an inner zone created after a focusing phenomenon exhibits an analogy with
a Petrowsky’s lacuna. Naturally, the wave field varies with direction, but only because its source does so.
Spherically as well as axially symmetric cases constitute major corollaries. Asymptotic developments,
evolving ultimately into steady limits, are also deducible. An indirect application is illustrated for
magnetoacoustic flow parallel to a magnetic field; on induction by a cylindrical Gaussian-approximated
current distribution, weak effects appear everywhere during the steady state and are superposed upon
strong stationary wave effects bounded by cone sheets which project either (i) downstream for a
supersonic—super-Alfvénic flow, or (ii) upstream for a restricted subsonic-sub-Alfvénic flow. Finally, the
main results are directly applied to elastic wave propagation from a two-component Gaussian body force
concentrated about a spherical base; a spherically symmetric radial component generates a strong
irrotational wave field normally involving an instantaneous point singularity; an axisymmetric azimuthal
component generates a strong solenoidal wave field.

concentric spherical fronts. Superposed is a weak es-
timable “error” effect traversing the entire (x,#) hy-
perspace. Dominant quantities in each case represent
the solution for the instantaneous impulse over the
spherical sheet |x| =». Trailing terms arise from the

. INTRODUCTION

Consider the Cauchy-type! radiation problem gov-
erned by the inhomogeneous wave equation

= 2 7)1 2
Der= V20 + (VT )" exp(~£2/7)f(x), (1.1) Gaussian stretch beyond |x| =7 and the peak instant
together with zero initial conditions at instant {=7": t=0. The present paper effectively examines a situa-
tion wherein such an impulsive source sheet becomes
$(x,T)=0, @,(x,T)=0. (1.2) P

dissipated in both space and time,
Here, the position vector x= (x,,x,,...,%,)€R,, the in-
finite n-dimensional space whose Laplacian V2= 82/ox?
+++++082/8x2, Unless otherwise specified, the integer
n=2. Inaccordance with (1.2), emission proceeds
from a state of rest during which the radiating source
is abruptly switched on when /=T, subsequently taken
at —«, Thereafter, the time variation of the source is
Gaussian, attaining its peak at /=0, This peak can be

By certain modifications of the basic analysis, ex-
plicit solutions are deduced for magnetoacoustic flow
past a cylindrical Gaussian-approximated current dis-
tribution; anisotropy in the magnetoacoustic wave sys-
tem prevents a direct application to an initial value
problem; hence a modified approach is necessary to
accommodate a radiation condition in place of initial
conditions. However a direct application is possible

substantially raised and sharpened by making its time
scale T appropriately small; the present paper is es-
sentially concerned with such a situation. Further-
more, the spatial distribution f(x) of the source is
originally defined to be a convolution, eventually inter-
pretable as an approximate radial Gaussian with a high
and sharp concentration about a spherical (circular if
n=2) sheet |x| =7(>0). It is also directionally depen-
dent on an arbitrary density factor.

To determine the scalar field ¢ during the unsteady
phase, (1.1) and (1.2) are first combined into a single
radiation equation within the class envisaged by Light-
hill*?3, i.e., incorporating a partial zero mode. Multi-
ple Fourier synthesis is then applied.

The peaking of the source generates strong hypercon-
ical fields, resolvable into spherical harmonics and
physically contained by expanding as well as contracting
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for an isotropic elastic medium.

Il. FOURIER TRANSFORMATION
To tackle the problem posed, we first define the func-
tion
S=0H({t-T)=¢ (t>T), 0(<T), (2.1)

where A denotes the Heaviside unit function. Thus, by
a law of generalized functions,* we get, on multiplying
(1.1) by H(¢ - T) and using (1.2),

®,,= V2o + (1Vm) " exp[ - (s + T)?/7*] fR)H(s),

with s=¢ - T. We now introduce in (x,s) hyperspace,
the Fourier transform

(2.2)

H.F.T.[¢]= (271)'""ﬁ¢n exp(—ia* x)dx |- & exp(-iws)ds,
(2.3)
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whose inverse

womie

o= fRn exp(ia*x)da .. HF.T.[®]exp(iws)dw,
(2.4)

with the outer integral in (2.4) ranging, with respect to
the wave vector a= (o, a,,...,a,), over R, whose
typical volume element da =da do,***da,; also, the
scalar product ¢ *x=ax,+***+a,x,, Since &=0 when
$<0, then regarding the w path(-=~ -ie,® —j¢), one re-
quires that for each a € R, (see, e.g., Ref, 2, Appendix
B and Ref, 3):

-€<Im{lowest complex w-singularity of H.F.T.[®]}.
(2.5)

The H.F.T. of the source term in (2.2) involves, within
the physical x space,

F.T.[f]=(2m)" [ f(6) exp(-ia*x)dx, (2.6)

combined with
(21)MTVm)? [ H(s) exp[~iws — (s + T)2/7%)ds
Whereupon, the H.F,T. of (2.2) produces

(a? - wH.F.T.[®]

_F.T. F.T.[f]
2117~/_

Applying this to (2.4):

fT exp[—iwlu - T)—u?/72]du, 2.7

d= ﬁenF.T.[f]L(t]oz)exp(ia'x)da, (2.8)

where, writing a= || =(a?+ a2+ v+ a2/,

Lilay=(anys [ e"p zwt)dw(rﬂ‘l

=w=ig

X f exp(—iwit —u?/T3)du. (2.9)
T

The right side of (2.7) involves the factor exp(iwT),
which stays analytic over Imw=0 as T~ -2, In this
limit approach,

(TVM? [ expl—iwn —u?/m%du ~ exp(-Lw??), (2.10)
which (holds for complex as well as real w and) is ana-
lytic throughout |w|<=. Hereafter, we assume the
limit 7= —w and that, correspondingly, {> -, Inpar-
ticular, ¢=®&. Also, from (2.,7), the two real poles of
H.F.T.[¢] at w=|a|, - |a| are its lowest singularities.

So, according to (2.5), €>0. Furthermore, (2.9) be-
comes
ceomje . 1,2 2
L{t| @)= (2m) expliwt -5 w'r?) dw. (2.11)

2 2
e =le A - W

For our purposes, we envisage the spatial source
distribution f(x) as a convolution, over R,, of a function
p(x) with the Gaussian, viz,,

Fx)= /Ty [ oly) exp{ ~(x - ¥)2/xldy, (2.12)
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k being a length scale, Applying (2.6):
F.T.[f]= (207 o o(y) exp(~ia - y)dy(x/m)™

x ﬁa"exp[-ia T (X ~y) - (x ~y)*/k?lax

=(@0)™" o o) exp(~a+y - fa2)dy,

via an n-dimensional extension of (2.10), So, from
(2.8),

¢=®= [ pIK(X,t|y)y, (2.13)
where
K(x,t|y)=(2m)™ fRnL(t]a)exp[z‘a- (x-y) -ta??|da,

=@m™ ﬁ’m L{t| @) exp(-; o2k da

Xjﬂn exp[iats (x - y)]do (2.14)
with the inner integration performed by letting the unit
position vector £=aa™ range over &,, the n-dimen-
sional unit sphere (circle if n=2) with surface element
df?, located about £. Now a law of spherical mean®
stipulates

a1 £2)(n=1)

f g(x° £)de, = T(j__]_)_ -i (1- 2)(1/2)(n-3)g(\x\ £)dE,
gn
(2.15)
Also® if v> -3,
(%Z)V 1 g2y ~(1/2)

— L (L=£7) exp(iz £)di=J,(z), (2.16)

ViT(v+3)
the Bessel function of order v. Consequently, (2.14)
reduces to

K(x,t]y)=[(@n)™"2/|x —y| /1] [" L(t]a)

XJu/z)n-x(a |x - Y| ) exp(-%azxz)a“/m"da,

(2.17)

I1l. THE SPATIAL SOURCE DISTRIBUTION

According to generalized function theory* a limit in-
terpretation of (2.12) is

Lim #(x) = p(x). (3.1)

Let us choose
px)=x (D)5 (|x| -7)|x|*™" r>0), (3.2)

where the unit vector X=%|x|™, and & denotes the one-
dimensional Dirac delta function. It then follows im-
mediately from (2.13) that

¢=fnnx(C)K(x,tly§)d9t, {3.3)
with the unit vector § ranging over §,. Clearly

K(x,¢|7¢§) plays the role of 2 kernel. Its dependence on
x and v{ arises solely through the argument [see (2.17)]
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|x—7E| = &2+ 72— 2|x|rRe £}/

=[0r%)%+ (| x| )2 - 2| x|rXx - EJ/2

- vk - |x|¢

So,
KX, t|r)=K(r%,t| |x|¢). (3.4)

Hence, by virtue of (3.3), we assert the following »e-
ciprocity principle: for a fixed obsevrvational divection
X, the solution ¢ vemains unchanged if |x| and v are
intevchanged.

Hereafter we restrict the length scale « to being .
small and approximate accordingly. We shall subse-
quently prove that

@) ~x @) (VT exp[ (| x| -7)2/ k)0 x| )22,
(3.5)

corresponding to a Gaussian distribution loaded (for
small k) about the spherical sheet |x| =7 and coupled
to a directionally dependent density x(X). (Throughout,
substitute “circular” for “spherical” whenever n=2.)
Note a consistency of (3.1), (3.2), and (3.5) with an at-
tainment of the delta function via a Gaussian sequence.
Also, applying (3.2) to (2.12):

F(X) = (k'm) " exp| - (x*+72)/k*|F (x), (3.6)

where, letting x=2r|x|/x?,

Fx)= fo, x(8) exp(\X e £)dQ. (3.7)
Write £=(%,,...,¢,). Interms of n — 1 angular co-
ordinates,’
g,=cosyd,(n=2), ¢,=siny cosy, (n=3), (3.8)
¢,=siny, siny,cosy, (R=4),..., (3.9)
Epey = Sind; * * * sind, ., cosy,., (n=3), (3.10)
§,=sing, * * ¢ siny,, sing,., (r=2). (3.11)
Also
n=1
A =T] sin"™*""9,d¢,. (3.12)
v=1
Consider the recurrence relations:
Frp= LT XWy, o $pny) exp (0K £)dY,, (3.13)

with »=2; while for n=3,

Froym= J F oy sin®, ,dd, , (1=2,...,n-1).
(3.14)
Suppose
X@)=X Wy, Ppay)e (3.15)

Then corresponding to p=n -1, (3.14) [or (3.13) if
n=2] can be identified with (3.7):

FX)=F,. (3.16)

An angular system (6,,...,#6,.,) can be similarly as-
signed to the physical direction X= (X,,%,,...,%,), e.g.,
by substituting %, 6, for, respectively, ¢,, ¥, through-
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out (3.8)-(3.11), At present, we assume that the ¢
frame has already been orientated in such a way that,
for the given % direction relative to it, 6,#0 or 7, but
€(0,7) (v=1,...,n—2) while 6, ,#0 or 2r, but (0, 27).
Now define

A,,_u=:Z'§;?,§, (£=2,...,n-1), (3.17)
B,,_u="ff siny, sind, (L=2,...,n-1). (3.18)
i
Evidently, for u=2,...,n-2,
B, ,=B,_,. siny,_, sinf,_,, (3.19)
A=A+ B, cosP,_, cosb _,, (3.20)
via (3.8)-(3.11); so
A, +B, ,=A, _, +B, . cos(¥,_, -6._). (3.21)
Also,
A, + B =cos(¥, - 6,); (3.22)
X £=A,,+ B, ,cos(P,., - b,.,). (3.23)

Note from (3.17) and (3.18) that A,_, and B,_, are inde-
pendent of ¥,_,,,. Also, within the ranges of integration
for Fo,Fy, ..., F ., viz., $,c(0,7) withv=1,...,n

- i, the quantity B,_, >0.

An appropriate approximation of F(x) is achieved
through successive asymptotic approximations for
large 1. Just for this purpose alone, a basic hypo-
thesis is that X(¢,,...,¥,.,) is analytic over alln — 1
ranges of integration indicated in (3.13) and (3.14). We
start from (3.13), expressible via (3.23) as

Frp=ex0(M,0) [ X Wy e e b0
X exp[AB,., cos(¥,, — 6,.)]d¥,.,,

to which we apply the well known method of steepest
descents.®? Among an infinity of saddle points (all real,

of order one, and) determined by sin(¥,., - 6,.,)=0,
only three are actually relevant,viz., 6,.,,6,,+7, 6,

-7. The saddle point 6, invariably lies on the given
path (0, 27). Suppose 6, < (0,7); then 6,_,+7 < (0, 2n)
and so contributes to F_,, but not §,_, —7. Alternative-
ly, if 6, (7,27), then 6, —7< (0,27) and contributes
to F,.,, but not 6, +7. If 6, =7, then §,_, ~7=0 and
6,.,+ 7= 27 8o that they both contribute. In each case,
the contribution from 6, -7 or 6, + 7, being gov-
erned by the factor exp(-AB,_,), is negligible compared
with the saddle point contribution of 6 _, which domi-

nates:
F,.,~ (27 /2B, )" exp[MA,_,+ B,.,)]
XXy, eee ¥z Opey)s
Next assume
F,_,~(21/aB,.)"* " exp[\(A,_, + B, )]

XX(Zpu-" ;‘xbn-u; Bn-uuy"' !en-l)!

n=1

(3.24)

which evidently holds for ©=2, This validity may be
extended, by induction, to cover u=3,...,n-1. Thus
a first approximation of (3.14) via (3.24), incorporating
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(3.19) and (3.21), yield
Foyq~(2n/AB,_, )* /" exp(\ 4
o f;X((f)l, oo yd’n-u’ Gn-u-ﬂ.’ erey gn-l)
X exp[AB,_, ., cos(¥,., — 6,_,)]

X (siny,.,/sinf, )02y

-y

(3.25)

Again, we encounter the same type of saddle points,
Among these, only 6,_, lies on the present (shorter)
path (0,7) and provides the dominant contribution.
When evaluated, it confirms the anticipated consistency
of (3.25) with (3.24), which therefore holds for u
=2,...,n~1, Inparticular, with u=n -1, and (3.18),
(3.22) accounted for, (3.24) enables (3.14) to be approx-
imated for F,=F(x) by the same steepest descent pro-
cedure. Whereupon,

F(x)~ (21 /2) "0 2 exp(0)X (8,,. .., §,,)
= (1) r | x| 22 exp(2r x| /62X &), (3.26)

Substitution into (3.6) proves (3.5).

IV. THE L FUNCTION

To compute the solution from (3.3), one needs the K
kernel, Its derivation from (2,17) must be preceded by
that of the L function via {(2.11). This involves the inte-
grand

y(w)=[exp(ivwt - tw?r?)]/(a? - w?¥), (4.1)

integrated, for a < (0,%), along the horizontal contour
Imw= —€ (<0) from one infinite end to the other. Our
present goal is the evaluation of the L function to an
estimable error trailing a recognizable quantity that
will eventually enable a convenient management of
(2.17). Henceforth, we also assume the time scale 7 to
be small.

First, we wish to deform a portion of the prescribed
contour (~= —i€,» ~i¢) until part of it rests on a hori-
zontal line, say w=0+:2¢,/7?, where o and £, dencte,
respectively, a real variable and a real constant. So,
when t# 0, then in (4.1), the exponent factor rather de-
sirably approaches zero along this line as 70 if
1,(2t —1,)> 0, which is satisfied by #,=¢f. Thus we select
[*w=0+42t/72, a horizontal path within Imw=0 ac-
cording as ¢Z 0; tentatively, we allow o< (~N/7%,N/7%)
with N> 0. Then

imw

B

L.
-

-R~[E T i€ R-LE

FIG. 1. Case: t>0. Deformation of the contour L for the in-
tegration of y(w).

596 J. Math. Phys., Vol. 19, Na. 3, March 1978

N S

[
-R-{¢€ >
L

FIG. 2. Case: {=0.

N /2

_ 2 /2 exp(—z0?72)do
[ v(@)aw=exp(-r/7) e e e (4

L*

Since

| a?—{o+ i2t/12)2| =[(@ - 0)2+ 4% /79 2 (@ + 024 42 /TP 12
>4f2 /74,
S0
| [ox v(@)dw] < §(*/2) exp(-£2/77) f.ﬁfﬁ exp(~302r?)do
=EVT /) exp(—12/rertGN /7Y, (4.3)

whenever £#0, If =0, (4.3) fails; however, we can
still use /*, which is now a real path: Imw=0; in this
case (4.2) remains valid but must, if necessary, be en-
visaged in the sense of a Cauchy principal value.

For each tc (~<,«) and each a c (0,<), we restrict
the positive parameters € and N to being sufficiently
small and large:

€<2|t|/m? (if t #0), N>max(at? 2|t +er?). (4.4)

Now, with w= —je as center, consiruct fwo cireular
arcs [, having the same radius R, and joining the end
points of L* at w=+N/7T?+42¢/72 to the original path
Imw=—€. On it, let [ denote the resultant intercept.
According as 1£0, we refer to Figs. 1, 2, or 3. Evi-
dently,

R=[N?/T%4+ (2t/7%+ €2} 2,

and so -~ when N-=, Furthermore, /[, subtend the
same acute angle

2t+€7?
—tnn-l
B—tan( N >

at the center. In view of (4.4),

0<B<a/4for t=0, -m/4<B<0 for ¢t<0; (4.5)
Imw
-l ol
4 ®- Rew
-R-(€ - -L’éj > R-(€
i A Tl
£ T Ly
. 2 » > .
NT v i2tT e N/T24i20/T?
FIG. 3. Case: £<0.
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furthermore, the only singularities of y(w), viz. two
real simple poles at w=zxa are well inside (or outside)
the domain bounded by L, L_, L*, L, for >0 (or <0), but
are originally threaded by [* when t=0. In the latter
case, [* may, for a principal value (P.V.) interpreta-
tion, be indented below both poles via infinitesimally
small semicircles described anticlockwise, With
L.,L* L, directed and arranged as shown (Figs,

1,2, 3), they constitute a clockwise (or anticlockwise)
deformation of the path L for ¢=0 (or <0), appropriate-
ly indented when #=0. Thence, according to residue
theory,

fL Y(w)dw= 2m’H(t)[re§Zgue y{w)+ rews=i_%uey(w)]

ot Syt e o
provided £#0; but, if =0, then
fl‘/(w)dw= ﬂi[regiguey(wh residuey(w)]
(P [ J e, (4.7)

We next examine behaviors along the circular arcs
L,:w+ie=Re'’, where

on [,: 0<y<B(t=0), -[B|<p<0(¢<0), (4.8)
on[_:m-B<P<m(t=0), m<y<m+|B](t<0).  (4.9)
Now,
[Re(iwt ~fw?r?)];, = et + §€*T2 — 3[37°R2 cos2Y
+ (2t + €7?)R sind] < et + 1272,
(4.10)

since (2¢{+ €7%) siny> 0 and cos2y> 0 by virtue of (4.4),
(4.5), (4.8),(4.9). Let us assume that N, as restricted
under (4.4), is also large enough to permit B> 2(a?

+ €2, Then

|02 -~ w?|;,=|a+ic —~Re'*| |a —ie+Re|
=|R - |a+ie| | |R -|a-ie]| |
=[R -(a?+ €2 /22> iR, (4.11)

Let Ay represent the relevant positive ¢ interval
among those four defined by (4.8) and (4.9). Whence,

= [ 1| |dw]

_ exp[Re(iwt — §w?T?)]
=R f laz — wzl Le

Jrwde

Ly dy

4
< —li exp(ef+3€272)~0 as N—w,

after accounting for (4.1), (4.10), and (4.11). Where-~
upon, after evaluating from (4.1), the specified resi-
dues in (4.6), the latter’s limit application to (2.11)
yields, for {#0,

L(tIa):kLnl (2m)t fl_y(w)dw
=H(t)a™ sin(af) exp( -5 @272+ E, (t|a), (4.12)

where
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E¢ta)=lim @m* [ y(wMdw= (@) exp(~£/77)
L*

©

exp(—10%13)do

4,13
L @7 (o4 i3/ (4.13)
and, is in view of (4.3), bounded:

|EL(t] a)| <3(r3/t2V) exp(~£2/77). (4.14)

However, in the case #=0, both residues in (4.7) elimi-
nate each other; consequently, and via (4.2),

L(Ola)=}}_£n, (217)'1P.V.f y{w)dw
- @)DV, f M

i.e., with E, (t|a@) formally expressed by (4.13),
L(0|a)=P.V.E (0] a).

do, (4.15)

(4.16)

V. THE K KERNEL

The expression (2.17) for the K kernel can be deve-
loped with the aid of (4.12) and (4.16), First, define

(2m)-f1/2n

Ey(x,t|y)= Tx _y @ S B (| @) (pym (@ |x=y])

X exp(-fak?)alt/2gq (5.1)

with P.V.E,(0]a) replacing E, (¢} @) when t=0, In par-
ticular, then,

K(x,0|y)=Eg(x,0]|y). (5.2)
Note also that [cf. (3.4)], if §=y]|y|",
Ex(x,t|y)=Ex(|y|%, ] |x]¥). (5.3)

Application of (4.12) to (2.17) leads to an a-integral
involving the integrand factor

expl -1 0?(x%+ 72)] sin(at) = Z (r2+ 72) 8%

—rsin{at),
4Tt a®

(5.4)
We now quote two results from Ref. 8 [viz. Sec. 3.4(3)]
sin(at) = Gras)t/a], ,(at) (5.5)

[applicable to (5.4)], and the Neumann series (Sec.
(16.1)

J[(Z2+2% - 2Z2 cosy)’?]
(Z%+22 - 2Zz cosy)’

2T &
-

E (m+ V) 0 (Z2) 0, (2)C (cOSY). (5.6)
Here, C!(cosy) denotes the Gegenbauer function of de-
gree m and order v; its argument cosy may be regard-
ed as the scalar product X*¥y. Thus, we eventually
arrive at

x| |yl 1-(1/2)n
K(xytIY)=EK(X,f|Y)+H(i)('27§1§T1—)/2),.—_,/r

L] (K2+T2)l 821
X —_—
; rurro Al

xi(m+zn—

m=0

i - l)c’("l/z)n-l(i,‘g,)cm, (5‘7)
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provided ¢{# 0, and where

G= Jo™ T 1o M e 1ynet (@ | X W1 farmen (@] ¥ 22 dr,

0:e2<(|x|-|y]?, (5.8)
={ @] 1310 P i S x| Iyl (s 9]0, (5.9
cos[(m+3n - DrjGEm3|x| IYIt)-llem+(n/z)-3/2<£§|:i%> (|x|+ | y])z<ez, (5.10)

r

[see Ref. 6, Sec. 13.46, Egs. (1), (4), (5)] with
Pooiisoymmsse 304 @, (n/2y-3/2 denoting Legendre functions
of the first and second kinds.

A bound can be readily formulated for the remainder
term E, if 20, Now [Ref. 6, Sec. 3.31, Eq. (1)]

|7,(2)|= | G2)"|exp(|Imz )/ Tw+1) (> -3).
When incorporated together with (4.14) into (5.1):
73 exp(~#2/7%)
£2T Gn)(2Vm )™t

73" exp(—£2/77)
= jt—zg(x%z‘m7r (t+0)

| Ex(x,2[y)] < Jo* exp(-fa2?)amida,

(5.11)

provided 7= k, assumed hereafter,

VI. THE RADIATION FIELD

The radiation field is essentially secured by applying
to (3.3) the results (5.7)-(5.10), or just (5.2) if =0,
Thus, throughout —eo<{<:

E (—w<t<||x| -7]), (6.1)
p=< P+E (| |x|-r|<t<|x|+7), (6.2)
Q+E (|x|+r<t<w). (6.3)
Here,
E= [, X(O)Eg(x,t]rE)dQ. (6.4)
Also,
1 L) (K2+Tz)l BZKP*
P=ﬁ(llz)n(,,lx”(l/z)rn-ﬂz oz a0 (6.9)
cos(znm) (k2+ 7#) 221Q *
@= ﬂtl/z)"‘l(rl;i)(”z)("'n Z 92i+1]] 312 (6-6)
where, in terms of arguments
y2+x% 12 l(tz—x2—72>
= H— 6.
§=cos” < 5 1 x| ) A= cosh™ | o1 (6.7)

which are real over the respective domains supporting
P and @, we have

P*=7; Xm(i)Pmﬂn/?)-s/z(cose)’ (6.8)

ms=0

Q*= i} (_1)m’lxm(i)an(n/z)-S/Z(COShA)’ (6'9)

m=0

with coefficients
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Xn®)= (m+3n - DT Gn - 1) fo X(OICHA™1E* £)a,.

(6.10)

Both P and @ acquire their directional dependence on x
through these y,, coefficients. Note the important fact
that

¢ =0 for odd n. (6.11)

Regarding (6.10), the following rules (Ref. 6, Sec.
11.41) are relevant:

lim (m+ )T (W)C,(cosyP) =2 cosmy (m#0),
11m vI(v)Ci(cosd) = CY(cosy) = 1.
Thus, for the two-dimensional problem,

Xo®)= Jo X (@)dy, (6.12)

X (X)=2 JEX @) cos[m(d - 6 VY (m=1), (6.13)
where X(¥)=x(cosd, siny) and 6, signifies the polar

angle: X=(cosé,, sinf,) (cf. Sec. 3).

We now use (6.4) to establish an upper bound for |E|
when t#0. If £(cQ,) is related to ¢,,...,¥,, by (3.8)-
(3.11), then siny, = |siny,| for v=1,...,n -2, and leads
to

(=1%/7%)
|B| < “gpmmmir Jo, IX()]d%, (6.14)
after accounting for (8.12) and (5.11). Moreover, since
(Ref. 5, Sec. 1)

ﬁ,"dﬂﬁ 271/ /T (3n) = surface area of Q,,  (6.15)
therefore if x(£) is bounded over £,
3=n _p2 /2 R
|E|<T—£M ax |[x®)| (#0). (6.16)

PYCNES ST o n

Hence, when t#0, the “error” E can be made as small
as desired by choosing a sufficiently small time scale
7. The quantity E normally depends on x and #, but not
its bound in (6.16). Its exact representation of (6.4) can
be expanded via (5.1) and (5.6) to yield

1 = ~
E= 27(1/2»,(,” x| )(172)7:-1 ”é;oxm(x)Em( ‘x| o1, (6.17)
valid vt € (-« ) and wherein
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Em( Ix‘ ’ t) = jt;dJm*(n/z)-l(ay)me(n/z)-l(a lx‘ )EL (t| (1)

x exp(—ia?Pada; (6.18)
for =0, the E; factor must be replaced by its P.V.

So, like P and @, directional dependence through the

X, coefficients is also experienced by E, and hence by
¢ as well. Note [from (4.13), (6.17), and (6.18)] that the
source has imparted its Gaussian factor exp(-2/72) to
E,

At the center x=0, our results simplify considerably.
First, since?®

Qu2)=% [[z+(z* - 1)"2coshy]*1dy (v> ~1), (6.19)

therefore lim (r|x|)‘””“""Qm,(",z)_s,z(coshA) 0 if m
=1. Furthermore when £2> %, then via the transfor-
mation: £=tanh(z¥) of the 1ntegra1 variable in (6.19)
and an appeal to (2.15), we get

T(sn —é)fnndﬂe
zﬂ(n-n/z(tz _7.2)(71-1)/‘2 .

3 (1-n) =
lxl_,ns (Tlxl) 1o /ZQ(nlz)-s/z(COShA)'

So, accounting for (6.15) and the fact C{"/2 4k . ¢) =1,
(6.8) combine with (6.9) to yield

(271-2)

Q| x-0= - cos(znm) — w7 | x(£)dRQ

n

2, 22\l g2t
Z (k2+ 7% 3t2’ (12 —=y2)1m 2 (12> 42y,

22101”
(6.20)
Now, (6.1)~(6.3) must be interpreted for x=0 as
follows:
Elpo  (=wo<t<y), (6.21)
¢)1x=0=
Q‘X=O+E|x=0 (T<t<°°)- (6.22)
Also, from (5.3) and (6.4)
B| o= Ex(r,t]0) fo x(£)de, (6.23)

which, incidentally, obeys the same inequality [viz.
(6.14) or (6.16)} as E when x#0. [N.B., in actual fact,
the result (6.23) should be independent of ¥, The ex-
pressions (6.20)-(6.23) fully define the solution at x
=0.]

If » is now substituted by |x|, this solution converts,
by virtue of our reciprocity principle (Sec. 3), into the

solution at any x position, but for »=0, i.e., corre-
sponding to [cf. (3.6) and (3.7)]
F®) = (/T " exp(-x2/k%) fo x(£)d%, (6.24)

which describes a point concentrated Gaussian spatial
distribution weighted by a directionally independent
density fn")((é)dﬂr encountered in both (6.20) and (6.23),
The radiation field associated with (6.24) comprises

an E-perturbation traversing the entire x-space since
activation time ¢= -, and superposed upon a @ field,
The latter, which is nontrivial only for even n, emer-
ges after the peak instant £=0 of the source and pro-
gresses behind an expanding, possibly singular, spher-
ical front viz. |x|=¢.
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Suppose 7=0. Then from (6.14) or (6.16),

E =0 provided t#0. (6.25)

Actually, it is implicit that the contour deformation
described in Sec. 4 does not really apply if / vanishes
(simultaneously with 7), in which event E is not prop-
erly defined. However, from (2.11)
~eie o

aTo O

L(0|a)=(2m) /
Y momie

the vanishing follows from the Cauchy-Goursat theo-
rem after closing, within Imw< —¢, the given path with
an infinite semicircle which can be shown to yield no
integral contribution. Consequently, via (2.17) and
(3.3), ¢ =0 when =0, and, in fact, over the entire
range for (6.1). The emission process is impulsively
started by means of an instanlaneous activation, at
time ¢=0, of the source f(x)5(/) with spatial distribu-
tion f(x) approximated by (3.5). Suppose this spatial
distribution is now singularly confined to the spherical
sheet |x| =7, i.e., adopting the limit of f(x) as k=0 in
the sense of (3.1) accompanied by (3.2). Correspond-
ingly, the infinite series of (6.5) and (6.6) degenerate
into their leading terms. Whereupon,

0 (—w<t<||x|-7]), (6.286)

P*
¢= 47r(1’2’"(1/lx\)(1’2)(“'”

Q *cos(Gnm)
ZH(I/Z)"”(VIXI )(1 12)(n=1)

(x| -7 <t<|x|+7), (6.27)

(|x] +7r<i<), (6.28)

the field of the impulsive, spherical sheet source.

Evidently, the succeeding terms /=1,2,*++ in (6.5)
and (6.6) are mainly due to the spatial, almost-Gaus-
sian spread of the source beyond its spherical base
|x|=7. Moreover, its Gaussian time stretch beyond
t=0 is primarily responsible for the “error” E. The
latter represents a relatively weak component, strong
effects being retained by P, as well as @ (if #0).

VIl. THE PROPAGATION PATTERN

Consider the two hypersheets C, : x*= ( —)2, These
are hypercones convertexed end-to-end at |x| =0, /=»
about which their generator spins at a constant inclina-
tion of 45° to the time / axis which is, in a sense, one
of symmetry. We define C, as being that member pro-
jecting indefinitely ahead of its vertex into >, Its
complement C_projects rearwards and is assumed to
terminate finitely upon the hyperplane /=0. The cross
section here is the spherical base ]xl =% supporting our
radiating distribution f(x). Issuing forth from this base
and indefinitely into /> 0 may be envisaged yet another
(partial) hyperconical sheet C:x?= ({+7)?, again with
generator revolving at 45° to the / axis. Evidently, C
covers both C, and C_ (see Fig. 4). Let us denote: the
infinite hyperconical domain ahead of C, by Jg; the
hyperdomain enveloped between C,, C_and C by 0 p;
the entire hyperdomain behind C (i.e., inclusive of £{<0)
and infiltrating past { =0 into the finite hyperconical zone
behind C_ by ). It can then be shown from (6.1)-(6.3)
that
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FIG. 4. The hyperconical evolution of the radiation field rela-
tive to the supporting base |X| = at instant £=0. From here,
the right/left directed arrow points toward ¢ Z0.

E v(x,t)el, (7.1)
¢p=4 P+E V{x,t)cDp, (7.2)
Q+E vx,t)eDg, (7.3)

This scheme is geometrically portrayed with the aid of
Fig. 4. Normally, due to its variation with X, ¢ is not
symmetric about the { axis.

To translate into physical terms, we observe the
changing pattern (representing the actual wave propa-
gation) produced upon an intersection of the Fig, 4
configuration with a hyperplane travelling normal to the
t axis at unit velocity from {= -« to =,

Ever since the source is triggered at instant = -,
it emits a weak effect £, This has completely perme-~
ated the infinite surrounding medium by the time the
source peaks during =0, The peaking causes two
spherical fronts to separate concentrically from the
spherical source base |x|=7. One front expands with
unit speed, its path being the characteristic hypersur-
face C; we shall refer to it as the C-front. The other,

FIG. 5. The physical propagation scheme during the interval
0<¢t<y, Radial arrows indicate expansion or contraction of
the spherical fronts.
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FIG. 6. The outline at instant ¢=~.

a C_-front contracts with unit speed along the charac-
teristic hypercone C_.. Between them, a strong P field
diverges into and is, thereby, superposed upon the
weak E effect. Figure 5 depicts the propagation pattern
before time ¢=v,

The retreat of both C- and C_-fronts away from the
source base |x|=7 agrees with Sommerfeld’s radiation
principle (see, e.g., Stoker, Ref. 10 and also Refs. 2,
3, and 11). It represents a natural consequence of our
preliminary postulate (2.1), equivalently, that radia-
tion never precedes, but succeeds source activation.
The phenomenon is also compatible with the fact that
the hypercone fields, obviously induced by peaking, are
recorded only after the latter’s attainment (see Fig.

4), Such an aftereffect stems again from (2. 1), in this
instance, through contour integration.

The C_-front converges at the center x=0 when ¢=7,
By this time, the C-front has achieved a radius of 2»
(see Fig. 6) and continues to expand with further time
increase. However the shrinking C_-front is then re-
placed by a C,-front. This originates at the exact in-
stant ¢ =7 and focus x=0 of convergence of the C_-front,
and thereafter expands with unit speed along the char-
acteristic hypercone C,. The strong field @ appears
inside the C,-front. If n is even, @ #£0, and the con-
vertex (x,#)=(0, ¥)corresponds to an instantaneous
point filtey thvough which a converging part of P con-
verts info @; in fact, via the rule!?

27 sin(v7)P,(cos8)= @, (- cos 8)+ cos(vm)Q,(cosb),
it can be shown from (6.5)-(6.9) that
=-Q vix,t)eDp (neven),

and so the actual conversion is, precisely, a sign
change. On the other hand, if » is odd, @ =0, i.e.,
(x,£)=(0,7) corresponds to an instantaneous point sink
through which the convevging part of P disappears;
furthermore, the C,-front encloses a sphevical zone
somewhat analogous to a Petrowsky’s lacuna of si-
lence r*?° Normally, if singularities arise, they would
be confined to the C- and C,-fronts. Thus, in particu-
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¥

FIG. 7. Case: r<[<2r.

lar, the possibly singular filter or sink action at x=0
occurs only at the simultaneous instant of C_ annihila-
tion and C, creation. Before and after this instant, the
solution at x=0 [i.e., off the covertex (0,r) but, other-
wise, along the f axis in Fig. 4] is analytic and given
by, respectively, (6.21) and (6.22).

The outer C-front remains intact throughout its pro-
gress. Together with the C,-front, it bounds an advan-
cing spherical layer of constant thickness 2», within
which P now gets transported. The full radiation field
thus described is superposed upon the weak E effect
(see Fig. 7 for »<t<2r). The C,-front crosses the
source base |x| =7 when f=2r, after which the overall
emission picture maintains a permanent development
ad infinitum.

VIH. THE SPHERICALLY SYMMETRIC PROBLEM

Suppose, regarding the source, its spatial density
x(®)=1, which is independent of the direction % or
spherically symmetric about the center x=0. Then by
applying the rule (2.15) to (6.10), we get

&Y= o (n=1)/ L TiEn~1)
X (R)= 2wt 2(m+2n—1)‘17(§1—nj%—)
% _11 (1 _ 52)("'3)/2C;/2'1(£)d§. (8.1)

But if »> -3 [Ref. 6, Sec. 11.5(8)],

f gt#e0seCY (cosy) sin®P dy

0

_PVIT DT Qv+ m) Iy p(2)
- m T (2v) z? :

(8.2)

Now put z =0, and substitute the integration variable to
enable comparison with (8.1):

XoE)=2r2m oy (R)=0 (m=1,2,-°°), (8.3)
Thus, (6.8) and (6.9) reduce to
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pP*= 27Tn/zp(n/2)-3/2((:059)7

Q*= ‘ZWH/ZQ(nlz)-slz(COShA); (8.4)

whilst from (6.17),
E=(r|x|)F"Eq(|x],0) (8.5)

and obeys (6.16) with maximn|x(5i)| =1, The solution

¢ is determined by employing these results in (6.1)-
(6.3), (6.5), and (6.6). Evidently, ¢ is spherically
symmetric about x=0; so it is symmetrical about the

t axis in hyperspace. Otherwise, thediscussionsinSec.
7 hold.

If » is odd, (8.4) and (6.7) reveal that P * is a poly-
nomial in ¢ of degree »n - 3; hence (6.5) degenerates to
a finite series:

_ 1 Q2 (21 72 9 2P . o sn(COSH)
- (rlxl )(n-l)lz 921417 Py .

(8.6)

The generating spatial distribution is approximated by
(3.5). Inthe present situation, its exact form can be
conveniently established as follows. Again, use (2.15),
this time, to transform (3.7) to an £-line integral in-
volving the integrand factor exp(r£). This integral can
be easily tackled by applying (2.16) together with the
fact {cf. Ref. 6, Secs. 3.62 and 3.7) that over —m<argz

S%Tr,
e(1/2)wiJv(Ze-(1/2)1ri)= et /Z)V"iJ,,(Ze(”z’”)=I,,(Z), (8.7)

the modified Bessel function of the first kind. There-
upon, substitution of the subsequent result for F(x) into
(3.6) yields the exact value

fix)= 2'{-21(1/2)rr-1(2"'lx| /%)
xexp[ ~ (x2+72)/k?](r | x| p-1/2)n (8.8)

which, as expected, is spherically symmetric. Consis-
tency with (3.5) exists by virtue of the asymptotic ap-
proximation (Ref. 6, Sec. 7.23)

Iy roynm (27 | X | /6%~ (477 | x| /%) 2 exp (21 | x| /K%).
(8.9)

IX. THE AXISYMMETRIC PROBLEM

Suppose the spatial density is axisymmetric about the
x, axis in X space or, equivalently,

x®)=X(6,), (9.1)

6, being the colatitude: X,=cos6, (0= 6,=7). Inthe
subsequent analysis, n=3,

We shall first establish a preliminary result. Con-
sider the (n - 1)-dimensional vector % satisfying % sin§,
=(&,,%,,...,%,). Then [cf. (3.8)-(3.11)], % is a unit
vector in the (x,,x,,...,x,) frame, Likewise, if 7is
related to the unit vector £=(¢,,...,¢,) by nsiny,
=(&,,85,...,%,), then 7 is also an (n — 1)-dimensional
unit vector. Its end ranges over the (n — 1)-dimen-
sional unit sphere £, _, with surface element dQ,, say.
So, following the method of Sec. 3, we have
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Ja X @)Y (x* £)a,
= e S X @Y ee O fF sy,
= f X(@)sin"2payp

(9.2)

X fo,  ¥([x| cosé, cosy+ |x| &+ nsing, sing)de,

I inf2)=1

°T n— f X (@) sin™%p dy i (1 - p2)(n-a2/2

X Y(|x| cosb, cosy+ |x|nsin, sing)dn,
(9.3)
after applying the rule (2.15) to the integral over A

The spherical integral in (6.10) is of the type (9.2) on
account of (9.1) and therefore, in accordance with (9,3),
becomes

o in/2)-1 a2
ﬂn———— f X ) sin (/)dw
X f1(1 =)0z CD (o5 6, cosy+ n5inb, sing)dn,

wherein the inner integral can be resolved via a certain
formula (Ref. 6, Sec, 11.5). Thereupon the coefficient

X &)= 277202 50 = D)[Thn - 1P

x [T(m+n-2)]7 clr /2"1(c0591)

X [TX(@)CY P (cosy) sin™Hp di. (9.4)
The solution ¢ is now fully described by (6.1)—(6.3)
with the aid of (6.5)~(6.9) and either (6,14), (6.16), or

(6.17). As (9.4) indicates, ¥,(X) is axisymmetric; hence,
so is ¢,

As with spherical symmetry, the source distribution
can be exactly represented. We start from (3.7) and
use (9.1)-(9.3) to obtain

2.,,-(n/z)-1 ”
Fx)= ey ﬂ) X () exp(r cos§, cosy) sin" %) dp

x [r(-n

(27r)(n-1)/2 .
=(7\ sin, )77 ﬂ’

2 /200 /2 exp (A7 sin, sing)dn,

X (WM ()32 5in6; sing)

X exp(\ cos 6, cosy)(siny) /20172 qy, (9.5)

by virtue of (2,16) and (8.7). The distribution f(x) is
then determined from (3.6). Like its density X(6,),7(x)
is axisymmetric. The factor F(x)canbe expanded by
first applying to (9.5), the series [Ref. 6, Sec, 11.5, Eq.
9]

J .y (2 8inP sing’)
(z sin sind’ )" 172

22V r‘(y i

=0

exp(iz cosy cosy’)

mm! (m+v) Jm,,,( z)

Tn+2v) 2° CY (cosy)C, (cosy’)

(9.6}

after reverse accommodation of (8.7), and then identify-
ing each subsequent coefficient with (9.4). Thus, we
finally arrive at
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F(x)= (z/k)("/Z)-l'g_;oXm(i)lmo(n/Z)-l(A)’ (9'7)
So, the expansions of both f(x) and ¢ involve the same
set of x,, coefficients computable from (9.4).

X. CERTAIN FEATURES OF THE FUNCTIONS
P* AND C*

Within the hyperdomain 0, (Fig. 4), the infinite
series (6.5) for P involves the function P*. We are in-
terested in its behavior on the 0, side of the boundary
hypersurfaces C,C,. With 6 defined by (6.7), we have

cosf=1 along C or C_, =-1along C,.

A crucial point in our analysis is the expansion (Ref.
12, Sec. 4.8):

(1- Zx_\'+y2)'"=;;oc;(x)ym. (10.1)
Since CL%(x)=P,(x), therefore P, (1)=1 and P, (-1)
=(~1)", which are known facts. We now concentrate

only on the case where # is odd. Whence by (6.8) and
(6.10), from the ), side, when cosf==+1:

P*= (1) 2T Gpn - 1)
Xf;an(C)LZ?O (£1)"(m+ dn — 1)CS 211 (% o ;)} ag,. (10.2)

Now, by combining (10,1) with its v derivative multi-
plied by v, we get

20 (m+ VICH ()™ =v (1 = 2xy + y3)™

m=0

x[1+2v(x — )1~ 2ey + v, (10.3)

and this vanishes identically if y=+1. Whereupon, from

(10.2),

P*=0 on the D, side of C,C,. (10.4)

An important corollary may be drawn from the results
(6.26)-(6.28),viz., for the spherical sheet impulse, its
radiation field in an odd n-dimensional space is contin-
uous acrvoss the C-, C,-fronts and, in fact, vanishes
along both sides of each of these fronts. 80, generally,
the C- and C,-fronts need not convey singularities,

Suppose the observer is sufficiently far from and
within the J, side of the hypercone C,, i.e., with ref-
erence to (6.7), cosh4d > 1, The quantity @ * recorded
may then be asymptotically approximated, Now (Ref, 9,
Sec. 15.31),

Q. 2)=2"z> [ (1 - £Vde+ 0(™°)
JO

(]z\>>1;u>—1). (10.5)
Hence, via (6.9),
Q g "Xo(;{)Q(n/z)-gjg(coshA)y (10'6)
~ VAT (bn - §)(2 coshA)E ™7 o x(£)dQe,  (10.7)
after accounting for (6.10), (2.15), and (6,15). In par-

ticular, for evenn, (6.28) implies that at each x-posi-
tion deep inside the expanding C,-front, the field of the
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spherical sheet impulse develops asymptotically:

o~ ELITGn -3) Jox (£)d%
o {m1 )/2(tz —x2 - ,rz)(n-ﬂ/z

(10.8)

whenever ¢ >> |x| +v. Evidently this result approaches
zero as { -, corresponding to a gradual and ultimate
steady stale attainment of silence. For odd n, but in
the general situation with the fully Gaussian source, a
somewhat similar physical phenomenon is experienced
through a different mathematical route, viz., that
everywhere inside the C,-front,

¢=E -0 gradually as {-=; (10.9)

however, with impulsive generation but not necessarily
restricted to a sheet (i.e., k=7=0): E=0, so that once
the reception point is crossed by the C,-front, an im-
mediate steady state of silence prevails.

XI. MAGNETOACOUSTIC FLOW PAST A CYLINDRICAL

GAUSSIAN-APPROXIMATED CURRENT DISTRIBUTION

In Lighthill’s paper,? there is an introductory discus-
sion on pulsatory magnetoacoustic (or MGD) excitations
generated within a stationary gas by a fluid injecting
source with Gaussian strength loaded about a point.
The principles established in the present paper can be
indivectly applied to examine magnetoacoustic flow past
a current source with a different Gaussian distribution.

Consider a uniform state wherein an infinitely con-
ducting gas with unit magnetic permeability and density
p, flows with velocity v in the presence of a magnetic
field H; suppose c denotes the sound speed, while a
=H(47mp,) /% the Alfvén velocity whose magnitude lal
=a. Small disturbances are being induced by a weak
azimuthal electric current of density p,J|H|™. Let
|H|h,q,p,p denote perturbations in, respectively, the
magnetic field, gas velocity, and pressure. Nonrela-
tivistic linearized equations governing the perturbed
motion are then

Dp/Dt=~c?divq, divh=0, (11.1)
8h/at = curl(q X aa™)+ curl(v x h), (11.2)
Dq/Dt+gradp + aa x curlh=J x aa™, (11.3)

where D/Dt=2/3t+vegrad. We refer to a three-dimen-
sional Cartesian frame with typical position (v,,x,,z)
=(x,z), x=(x,,x,) denoting a two-dimensional position
in R,, while —o<z<w, The positive z-direction is
aligned with the Alfvén velocity:
a=(0,0,a). (11.4)

The flow velocity is chosen to be aligned with or op-

posed to this direction:
v=(0,0,v) with v>0 or v<0. (11.5)

The azimuthal source current, circulating anticlock-
wise, say, exerts a {ransverse electromagnetic body

force measured, per unit mass, by the vector
Ixaa™=|J|(%,0)=(2Z,0), say, (11.8)

X=(cos8,, siné,) being the unit radial vector in R,; here
Z=|J|X, a two-dimensional vector. We shall employ
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a source current with a cylindrical Gaussian-approxi-
mated distribution that is fairly concentrated about the
mean circle |x|=7(>0),z=0:

| 3| ~ @) (am) exp -22/1% - (|x| =72/ (r | x| )22,
(11.m)

the approximation being only for a sufficiently small
length-scale k. When k=0, the representation becomes
exact and corresponds to a cylindrical singular current
sheet with a longifudinal Gaussian distribution. The
length scale ! is also assumed small, and j(X) denotes
an azimuthally dependent scalar. The rapid decay,
from the mean circle, of the current strength may, for
example, be caused by electrical resistance along the
conducting element.

We seek, ultimately, a steady state solution. This
may be derived from an unsteady solution which has in-
corporated appropriate initial conditions. Unfortunate-
ly, the magnetoacoustic time-dependent problem is
anisotropic and cannot be resolved by merely applying
the principal results of this paper. Nonetheless, an in-
direct application is possible if we start differently. In
the method we shall adopt, zero initial conditions will
be avoided. In compensation, we shall impose, instead,
a radiation condition. This corresponds physically to
Sommertfeld’s radiation principle (Sec. 7) which was not
applied to the main problem, but follows naturally from
initial conditions. Both are equivalent to saying that
only the source emits radiation.

First let us propose a two dimensional vector A such

that
p+aa*h=-div(A,0). (11.8)

Whence, it is easily seen that (11.3) may be interpreted

via (11.6) as
Dq/Dt —aa* gradh=grad div(A,0)+ (Z,0). (11.9)

The three-dimensional vector (A, 0) is analogous to the
vector potential of classical electromagnetic theory.

The radiation condition is accommodated in accor-
dance with Lighthill,**!* During an unsteady develop-
ment, an exponential growth is imparted to the source,
whereby the pair {J, Z} becomes

{J,Z} e = et fdea J2 13, 2% expli(a, w)* (x,2)]dw,
(11.10)
in terms of Fourier transforms resembling H.F.T.’s
[see (2.3)]:
* A -3 c e b .
{J*, 2% =(2r) fRzexp(—za x)ix [_{J, Z} exp(—iwz)dz.

(11.11)

Throughout, €>0. All induced perturbations are allow-
ed to acquire in-phase exponential intensifications.
Precisely, the set

{p’q7h)A}=eEt fdea f_:{p *»Q*,h*,A*}

x expli(a, w)* (x,2)]dw. (11.12)
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By the time free perturbations from infinity arrive
within observation range, they become negligibly small
compared with source generated O(e*!) quantities and
therefore tend to escape detection near the steady state.
Equations are now transformed accordingly, and with
(11.4) and (11.5) accounted for. Observe that D/Dt
transforms into iwy, with v,=v —iew™. Thus, if 4, de-
notes the z -component of h, (11.8) and (11.9) become

(11.13)
(11.14)

From (11.13), the third components of (11.14) and
(11.2), as well as both equations in (11.1), we have

(11.15)

Accounting for (11.1) again, it can then be proven that
(11.13)-(11.15) are compatible for every & in R, if

[a? = wPmPUJA*= Z ¥, (11.16)

pr+a®hi= —i(a,w)e (A% 0)= —iA* &,

w(p,g*-a*h*)=i(a, w)A*s a -i(Z*,0).

viwhf=(c* —v2)(a,w) gt

wherein

. (0% = a®)(@? - ¢?) 1/2
miy,)=m{v —1€w")=[é;——— s 11.17)
€ v2{at+ c®) — a®ct (

and a = |a|. Hereafter, we confine attention to
(11.18)
(11.19)

either »>max(a,c),
or -min(a,c)<v< —ac{a®+c?)™*2,

corresponding, respectively, to either a supersonic-
super -Alfvénic flow in the positive z direction, or a
vestricted subsonic—sub-Alfvénic flow in the negative
z direction. So by (11.17), Uim,, gm(v)=m()=m, say,
is veal and positive. By (11.16), (11.12) yields

A:.eetf daf‘ Z*exp[i(a>w)'(x>z)] dw,
R, e 02— WIi(p —i€w™)

{11.20)

Bearing in mind the arguments associated with (2.12)
and (3.2), we introduce a two-dimensional vector

£(x) = (kVT)2 fo 0y exp[-(x - y)*/k?ly, ~ (11.21)
and select
px)=Xi(X)5(|x| -7)| x| (11.22)

Then, by virtue of (3.5), (11.7) is consistent with
(11.6) if

Z = {IVT ) exp(-z2/12) ().

According to Lighthill, each perturbation function be-
comes unique in the steady state if, prior to this, we
approximate its multiple Fourier integral for small ¢,
evaluate the approximation, and then let € ~0; in prac-
tice, the limit € =0 may be taken after any innermost
integration, e.g., the w integration with regards to
(11.20). Thus, via (11.11), (11.20), and (11.23), we
assert that, in the steady state

{11,23)

mA= fRz [(277)‘2 ng f(y)exp(-ia-* y)dy}

x1iml(z|a)exp(ia*x)da,

€0

(11.24)
where I(z | @) may be accepted in the form
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= exp(iwzm™ - ; w?r2)dw
- (a+iem’ —w)a —iem’ +w)

Iz |a)=(27)* (11.25)
wherein the integration variable w derives from that in
(11.20) via a scale change; also the new length-scale
T=Im™, while the derivative

v [a?(@? - ¢+ c2(v? - a?)]
mlv3(@®+ c®) —a?c?P

m'=m'(v)= (11.26)

which stays positive under (11.18) or (11.19).

Regarding (11,25), integration is performed along a
real path. There are two integrand singularities, pre-
cisely, simple poles; these are complex and occur at

w=a+iem’, -a+iem’ slightly above Imw=0.

(11.27)

Evidently, there are essential differences between rep-
resentations (2.11) and (11.25). In both situations how-
ever, the poles appear above the respective integral
paths. For our present real path, we may therefore
employ a contour deformation similar to that indicated
in Fig, 1 or Fig. 3. If 2= 0, the present deformation is
directed into Imw= 0 and crosses/avoids both complex
poles. When appropriately extended to infinity, the de-
formed contour comprises two circular arcs (which
contribute nothing to the subsequent integration) joined
to the horizontal path (—w+i2zm 772, «© +i2zm~'77%),
Eventually, we arrive at

I(z|a)=iH(z)(relevant residues)
+(27) " exp(—z2mT"%)

XJ”“ exp(=20®r3)do
a? —{o+i2em> 72 —dem’ )’

00

(11.28)

where, in particular, it can be easily demonstrated that

lim (relevant residues)= (ia) sin{azm™) exp(-;a?7?).

[3adt]
(11,29)
For z=0, no deformation is necessary, and
o L 2.2
- o exp(—3 w?T)dw
10] @)= (27) L R i (11.30)

which must be interpreted in the sense of a principal
value at the limit €= 0, By comparing (11.28)-(11.30)
with {4.12), (4.13), {4.15), and (4.16), we deduce that
the limiting value

1im1(z}a)EL(zm'1\a) over —wo<z<®, (11.31)
€0

with L(¢|a) defined by (4.12) or (4.15) depending on
whether {#0 or £=0.

In view of (11.31) and (2.6), formulas (11.24) and
(2.8) are related. The exact relationship can be iden-
tified by comparing (11.21) and (11.22) with (2,12) and
(3.2). Whereupon, we deduce that the steady state val-
ue of nmA can be derived from the earlier unsteady R,
¢ -solution to our main problem by merely substituting
zm™ and Xj(X) for ¢ and x(X), respectively. Suppose the
three-dimensional physical domains D, Dp, and D, are
derived from the respective hyperdomains 0, Jp, and
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DQ illustrated in Fig. 4 by substituting zm™ for ¢ in the
equations governing the hyperconical boundaries C, C,,
C.. Clearly, D, Dp, and Dy maintain a proportionate
similarity to 0, Jp, and D, respectively. Via (6.6),
(6.7), (6.9), (6.12)-(6.14), (7.1)-(7.3), and (7.5), we
draw the following conclusion:

E v(x,2)eD, (11.32)
mA=< -Q+E v(x,z)eD,, (11.33)
Q+E v(x,2)eDg, (11.34)
where
_ 1 wd (K2+72)“m2“
Q= 2y Ix| 72 Z—; 226411
N by (ay 0% 22m™ - x% —r?
X ; (-173,x) ?‘IQV-I/ZC—W) , {11.35)
with
Jo®)= [ &i(6)ap: € = (cosy, siny), (11.36)
&) =2 [T ei) coslu(y - 0))dy (w2 1), (11.37)
while
; 52, -2 =2
lEl<“7”7;§‘,§iZ;Z’ﬁT L (z+0), (11.38)
with
- 12
IIJ’II=<[0 lj(t)12d¢> . (11.39)

Here, (11.38) follows from (6.14) through the fact that

2 2
(S0 @1 cosyl aw) ([ 5@ simglay) <2l 12,
by the Cauchy-Schwarz inequality.

Let us discuss the constituents of mA. Bounded by
conical sheets (of the type C,C,,C _—see Fig. 4) are
two adjacent opposing strong fields, viz., —Q in D, and
+Q in Dg. Superposed is a weak E field permeating all
space and satisfying (11.38). The containing domains
Dp and Dq project ad infinitum in the positive z direc-
tion, i.e., downstrveam for a supersonic—super-Alfvénic
flow, but upstream for a restricted subsonic~sub-Alf-
vénic flow. This phenomenon follows mathematically
from the fact that both poles expressed by (11.27) lie
within Imw>0. It is therefore a consequence of the ap-
plied radiation condition and can be explained in terms
of wave propagation.

Consider an associated free motion in the absence of
any source, in particular

J=0, Z=0. (11.40)
Then, as a basis within the context of (11.8) and (11.9),
A=Axexp{i[(a, w)e(x,2) -0t]} (11.41)

constitutes an admissible travelling wave function pro-
vided [via comparison of (11.41) with (11.12)] (11.16) re-
mains satisfied with Z*=0 and € replaced by —io.
Hence, for A#0,

wmt(v-0w™) =a?, (11.42)
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a dispersion relation. With reference to a three-di-
mensional cylindrical frame, the group velocity of wave
energy propagation has a z component 80/8w, a trans-
verse (radial) component 80/0 &, and, denoting the az-
imuthal angle in (@, w)-space by ¢,, an azimuthal com-
ponent o "'80 /8y, which is clearly zero by (11.42). It is
easily established that

30 mp=-ow™) 0

= 11.43
bw m(v-owl) ( )

H

90 - 1

=F —
m'(v—-0w™)

(11.44)

3¢ wm{r—ocw Vm(v-0cw™)

at a = root to (11.42). For a stationary wave at the
steady state, 0 =0, we get

90/8w=m(v)/m'(v)>0 and 80/8a=%1/m'(2),
(11.45)

implying that the particular group velocity vector is in-
clined to the positive z direction and is parallel to gen-
erators of the conical boundaries for D, and Dg.
Therefore, -Q, +Q represent stationary wave fields
sustained by wave enevgy flux stveaming steadily from
the curvent source into Dp and Dg. The longitudinal
Gaussian spread of the source distribution beyond z =0,
gives rise to a weak and diffusive E field that receives
no wave energy.

XIl. APPLICATION IN ELASTODYNAMICS

To demonstrate a relatively straightforward applica-
tion, we consider an elastic displacement u produced

from some initially uniform state:
ulx, 7)=0, u/(x,7})=0 (XER,) (12.1)

within an isotropic medium. Suppose the generating
agent is a body force Z having Gaussian time variation:

Z=(rVu) T exp(~t /7)1, +1,) (7>0), (12.2)
with
f,=/0xDR, £,=1,(x%,6)1,, (12.3)

where, relative to the R, Cartesian frame with typical
position x = (x,, x,, x,),

X =(cosd,, sind, cosé,, sinb, sinf,) = radial unit vector,
(12.4)

while

i, =(0, —sing,, cosh,) =azimuthal unit vector, (12.5)

6, being the colatitude. Hence Z involves a sphevrically
symmetric vadial component f (|x|) plus an axisym -
metric azimuthal component f,(|x|, 6,). It is easily
verified from spherical polar representations that

Vxf =0, (12.6)

Vef,=0. (12.7)
The relevant equation of motion is

W ={c} = )V(Vou) +c2V?u + Z | (12.8)
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¢, and ¢, being, respectively, the dilatational and equi-
voluminal wave speeds. In particular, accounting for
(12.2) and (12.7):

(8°/81% = V) Vou=(1Va) exp(~1/12)Vf, . (12.9)
So if u?’ satisfies

ufl - c2vau® = (7V7 ) exp(-£2/72), , (12.10)
and

u{x, 7)=0, ui*’(x, T)=0, (12.11)
then

u=u 4y, (12.12)
for some u'? satisfying

Veu®=p, (12.13)
In view of (12.6), (12,10) and (12.11) imply that

vxut’=0, sothat V(Veu'?)= vy, (12.14)

Consequently, incorporating (12.2) and (12.10), (12.8)
yields

u? - c2va'? = (V) exp(-12/7%),. (12. 15)
By (12.1) and (12.11), we observe that
u?(x,7)=0, uw®x,T)=0. (12.16)

Now, (12.10) with (12.11) and (12.15) with (12.16) con-
stitute two independent Cauchy-type problems in R,
within the class covered by (1.1) and (1.2). To extract
their solutions from our main results, we assume that
the initial time 7= — and employ a Gaussian-approxi-
mated distribution for Z about the spherical sheet
|x|=%: For a small length-scale «,

AUxD~ (VT L exp[-(|x] -»)2/k?) 0 x| )Y, (12.17)
£Alx], )~ X,(8)(«VT ) exp[~(|x] -7)?/ k¥ [ x| )7,
(12.18)

X,(6,) being an arbitrary density function. Hence (12.3)
expresses vectorial forms within the class of (3.5).
Evidently the solution for c,u®’ {v=1,2) can be derived
from the ¢ solution of (7,1)-(7.3) in R, by substituting
¢t and ¢, 7 for { and 7, respectively, as well as X

=1) or i,X,(6,) (v=2) for x (X). Thus, via (6.5), (6.7),
(6.8),(6.10), and (6.11), we deduce that if, for v=1 or 2,

1 >\ (k24 c2r2)
Py = 3T 5l ?——‘5 2771 ¢

< ~, 8% vPe X% — czt2>
) v
X ;} Xy (x)a_tzTP”‘(———zﬂxl , (12.19)
where
XPE)=T2m + §) [p, 6CH R £)dQy, (12.20)

X2 @)= 2(m+3) fo X,(0)CL2E £)(0, - sing,, cosi,)d,
(12.21)
with
dSde=sing dy,dp, (0= <7, 0=y,=<2m), (12.22)

and
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¢ =(cosy,, siny, cosy,, sing, siny,}, (12.23)
then

e, vix,el®, (12.24)

cu” = p+e, vix,ely, (12.25)

e, vix,0)epy; (12.26)

D% DY, and )Y’ are four-dimensional hyperconical
domains proportionally similar to, and derived from
D, Dp, Dq (see Fig. 4) by substituting ¢, 7 for  into the
equations for the hyperconical boundaries C, C,, and
C.. Therefore, c,u®’ possesses a propagation pattern
resembling that described in Sec, 7 (with the aid of
Figs. 5-7) for ¢ in the odd » situation. The quantity
p, represents a strong field while e, represents a weak
field: In accordance with (6.14),

< V3 exp(~£2/77)

e, ser (20, (12.27)
42 /.2
e, < Mz“%*%’;r%iﬁ—) (t+0), (12.28)
where
1/2
IX,ll= <f0” IXZ(ZI))IZdzb) . (12.29)

Here, (12.27) and (12.28) follow respectively from
2 2
(f% 1cos¢1|dszr> + (ﬂza | siny, | \cos¢2]d9c>
2
+ (fgs |sing, | ‘sinz,bz‘dﬂ:) =12n%,
2 2
(Joy 1500 1 sinlane] + (o, 1%, | costs|ane)

2
=32 (ﬁ,” |X,(&,)| siny, dwl) = 167X, I%.

The expressions (12.20) and (12,21) can be substan-
tially simplified. First, we note that for any function
Y

s

[E Y[cos(® - 6,), sin(¥ - 6,) ¥
= [ [Y(cosy, sing)+ Y (cosy, — sind)ldd. (12.30)
Thence it can be shown from (12,20) and (12.21) that if
A(8,,9,)= J, CL/%(cos 8, cosy, + sinb, sing, cosd)dy,
(12.31)
B(8,,¥,)= ST CL/%(cos 6, cosy, + sinb, siny, cosy) cospdy,
(12.32)

then

(1)(;‘) ’ . i
Wl’g'("2m+ ;3=(1,0,0) [T A6, ,) sing, cost, di,

+ (0, cosb,,sinb,) foﬂB(Gl, ) sin®y, dd,

(12.33)
@) .
—;'—-——,,1)§(2m+ §ok X088, 9, sing dyy . (12.34)
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Hereafter, we appeal to the following rules (Ref. 12,
Secs. 4.2,4.3,4.8):

CLR(E)=P,(£), P(t)=1, P|(&)=¢&, (12.35)
P, (cosb, cosy, + sind, siny, cosy)
=P, (cosh,)P,(cosy,)
> E:Z :ll))!! P! (cos8,)P} (cosy,) cos(ly), (12.36)
with
PL(E)= (-1} (1 - £)/2 d'P,,(£)/dE}, (12.37)

an associated Legendre function which, in particular,
satisfies the orthogonality relations

[ Propiass el
(k=m), O(kzm). (12,38)
From (12.31)-(12.35), we immediately note that
X ®=0, xP®)=0. (12.39)

Henceforth, we assume that the integer m=1. Using
(12.35) and (12.36), (12.31) and (12.32) yield

A(6y, ) =7P (cos6,)P, (cosy,),
B(8,,9,)=mm™ (m+ 1)"P} (cosf )P} (cosy,).  (12.40)

Whereupon, via (12.35), (12.37), and (12.38), (12.33)
and (12.34) reduce to

XP@)=2r%2%, x(&)=0 (m=2), (12.41)
~ 3/2(9
X2 (R)= 12%1)}"@05 8,
X Jor X,()PL(cosy) sinpddp (m=1).  (12.42)

On account of (12.39) and (12.41), (12.19) leads to

A

X

P TR [2(r%+ %2 - c2?) — k% — c312),

(12.43)
a radial vector with spherically symmetric magnitude;
it is generally irrotational. The final solution for c,u,
is determined from (12.24)-(12.26) accompanied by
(12.27) and (12.43). In view of (12.14), the weak field
e, must also be irrotational. Now, the strong field p,
exists only within the hyperconical layer p },”, wherein
x=0 is normally never encountered (Fig. 4) except
when t=c['r (Fig. 6). At this instant, (12,43) reveals
that p, acquires an inverse square singularity at x=0.
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No singularity occurs, however, if k=0=7, corre-
sponding to a singular radial force component that acts
impulsively from an infinitesimally thin spherical sheet.

Owing to (12.39), the inner series for v=2 in (12.19)
effectively starts from m = 1; the coefficients x{?'(X)
should be directly computed from (12.42). The latter
indicates that the strong field p, acts azimuthally with
an axisymmetric magnitude. Therefore, p, is sole-
noidal, and so is the weak field e, by virtue of (12.13).
The solution for c,u, is now complete and is expressed
by (12.24)~(12.26) accompanied by (12.19) and (12.28).
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Invariant properties of n-point functions and n-point
functionals connected with the translational invariance of

the formal measure
Jerzy Hah¢kowiak

Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland

(Received 21 March 1977)

We discuss invariant properties of the generating functionals resulting from the translationally invariant
formal measure used to define these functionals. The functionals considered depend on functions defined
on five-dimensional space, and we relate to them n-point functionals and n-point functions. We derive
equations for the above quantities, and we consider the connection with four-dimensional r-point

quantities.

1. INTRODUCTION

Many observations point out that enlarging di-
mensions of considered quantities usually leads to
the simplification of the formalism. For example,
using the generating function which depends on two
variables is the important step in the construction
of the Hermitian polynomials dependent on one vari-
able only. As a second example see Refs, 1 and 2,
where the five-dimensional formalism enables one
to use a statistical description of classical fields
to the quantum field theory.

In this work we consider the functionals dependent
on the functions defined on the five~dimensional
space. This enlarging of dimensions is due to the
fact that a local interaction is included in the argu~
ments of the considered functionals. In this way we
obtain the functionals in which translational invari-
ance of the formal measure used to define the con-
sidered functionals leads to direct consequences.

In Sec. 2 we show that the two infinitely dimen-~
sional Abelian groups appear in this context. We
construct here the functional GJ-[U] which has invari-
ant properties similar to Bloch’s theorem in solid
state. In quantum field theory such a functional leads
to the n-point functions without vacuum divergences.

In Sec. 3 we derive equations for n-point functions
and n-point functionals connected with the functional
J[U] which leads to formulas with vacuum diver-
gences. However, in this case relations between
n-point quantities defined on R! and R® spaces are
most simple. We also give in this section a schedule
of a self-consistent method that can be used to calcu-
late the n-point functions.

In Sec. 4 we consider the structure of the generat-
ing functional G,;[U], which is related to n-point
functions without vacuum divergences.

2. THE TRANSLATIONAL INVARIANT FORMAL
MEASURE

In Ref. 1 we have introduced, instead of the usual
generating functional T{j], a more general one which
may be used simultaneously to describe the different,
self-interacting scalar fields
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J[U]=f6<p exp{%ifdxdy(p(x)K(x,y)w(y)

+ifd.v?U(w,x)6(w-— e &)}

Here xc R?, ¢ is one scalar field, 6¢ « I, dpk). We
see, therefore, that J is the Gaussian type functional
defined on functions U(X) with £ from the five-di-
mensional space R, X¥=(w,x). After transformation
of the variable ¢,

o) —~ok)+hnl), 2.2)

taking into account the translational invariance of
the formal measure 6¢, we get the formula

(2.1)

JIU)=explihKh/2) f 6 expl{iioKo

+ifd§[wfdyK(x,y)h(y)

+ Ulw + k), 2)16(w — ¢ (x))}, (2.3)
which, after introducing the operator
(A, D) =Ulw +(x),x) +w [ dy Kle, p)h(y), (2.4)
can be described as
JIU) = exp(ihKh/2)J[A,U] (2.5)

with any 4.

This relation deseribes the property of the func-
tional J connected with the translational invariance
of the formal measure used in the definition of
(2.1). It is worthwhile to notice that in the case of
the five-dimensional formalism the above invariance
can be described by means of transformations of
functions U only.

Now we introduce the two infinite dimensional
Abelian groups of transformations depending on
functions 4,

(M) &) = Ulw + 2 x), x) (2.6)
and
(BUIR)=UR) +w [ dy Klx,y)h(y), 2.7
with the help of these one can express the trans-
formations (2.4) as
Ap=B,T,. (2. 8)
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The inverse operator

Lil=T_, (2.9)
and

B;'=B,,. (2.10)
Hence

A1=T 4B (2.11)
Now the relation (2.5) is

JIUl = exp(ihKh/2)J[B,T,U] (2.12a)
or

JIT_Ul=explihKh/2)J(B,UIl. (2. 12b)

The functional representations of the corresponding
groups of transformations are

Ilul=Jir,ul (2.13)
and
BJlul=J(B,UI.

Because transformations I', and B, are Abelian

(2. 14)

T Ta=Twun BwBr=Byun, (2.15)
their representations are also Abelian

P 4= Twun BuBy=Byun (2.16)
With the help of generators of transformations

Th=exp, 1), B,=exp(h, B) (2.17)

where

(i, )= [ dx ho) £x)

=fdx h(x)fdww(aU(w, x)/8w)6/6U(w, x) (2.18a)
and
(r, B)= [ dx h(x) [ dw dywK(x,$)6/6U(w,). (2.18b)

The hat over quantities means here that they act in
the space of functionals.

The equality (2. 5) may be now described as

T = explihKh/2) B, (2.19)

or
J=explihKn/2)T\B,J. 2. 20)

These relations exhibit the structure of transforma-
ions describing invariant properties of the function-
al J resulting from translational invariance of the
formal measure d¢. Concerning the possible solu-
tions of Eqs. (2.5) or (2.20) one can say that if the
functional G solves equation

GlUI=clA,U] (2.21)
and J solves (2, 5), then the new functional
J'[Ul=cGlUlIU] (2. 22)

also solves (2.5). Also any superposition of two
solutions of (2.5) is again solution of (2.5). The
functional G can be constructed from J in different
ways, €.g.,
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GlUl=ru*lulJlvl), (2.23)
where f is any function,

By means of any operator A which commutes with
operators A,

[4, A,]=0, 2. 24)
one can construct the functional G as follows
clul=J{Ul/J1AUL. 2.25)

Now with the help of the functional J defined by
(2.1) and transformations defined for any U as
follows,

(4,00, 1) = Ulw, %) = wj ),

we introduce the new functional G; which parametri-
cally depends on functions j and which leads to the
normalized generating functional for time ordered

Green’s functions in QFT,
G;lU1=4g[U1/J(4;U1.

To obtain the behavior of this functional with respect
to transformations A, we first calculate the com-
mutator [4;, A,

(A; A, U)(w, x)

(2. 26)

(2.27)

=Ulw+hx),x) +w [ Kx, y)h(y) dy = wjlx),
(A, D)o, %)

= AU, ) = wjlx)

= Ulw + hlx), x) = (w+ 1 (x))j(x)

+wa(x, Whiy)dy.
It means that
([4;, AU w, %) = hix)j(x). (2.28)

Taking into account the property of the functional
J,

JU+gl=expli [ dx gx)1JU], (2.29)
that is true for any g which does not depend on w,
we obtain from (2, 28) and (2. 5)
G, A UT=J AU/ T AA;U) = expl— ik, )]G, (U]
(2. 30
with
(r,j)= [ ax nix) jx).

The equality (2. 30) resembles in some way Bloch’s
theorem in solid state, where wave vectors Kk are
replaced by functions j(x) and translations are re-
placed by transformations A,(2.4), describing the
different symmetry of the infinite dimensional
“crystal” by means of different K. For

U=wjlx) + [ jp(w), (2. 31)

G;lUN| yuiz 31y = Tylil=TUi1/TI0) [see (3.9)),
(2. 32)

is the above~mentioned normalized generating func-
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tional describing one, scalar, quantum field with the
action integral

L=} [arxdy o @K(x, )o )+ [dxf 1y {0 &), (2.33)

3. n-POINT FUNCTIONALS AND n-POINT FUNCTIONS

From the physical point of view, n-point functions
generated by considered functionals are much more
interesting than functionals alone.

n-point functionals connected with the functional
J are

Ilxy, .00, %, |UI= UUN/6UGY)- - SUR).  (3.1)

The relation (2. 5) may be described with the help
of them as follows:

Iegyese 2, /U]

= exp(ihKh/2) [ @315+« v s 3,/ A4U)

X 6 (AU (3)/ U Ey)e « » 8(AUN(S )/ 6U )

= exp@hKh/2)Jw;+hxy), %450 . 00

n

+h(x,),x /A1, (3.2)
where we have used the formula
(A UNw’, ¥}/ 8U(w, x)
= 6{w’ = h(y) ~ w)bly - (3.3)

After differentiating (3.2) with respect to 2=0 we
get relations between n-point and (z + 1)-point func-
tionals connected with the functional J,

9
Eé(y_xk)—afjk Xy ..., % /Ul

k=1
=— [azJl&y, ..., %, 2/UI6(A,U) (2)/61(y) | pog

=— [d2JlZy, ..., %, 2| UKD (R)6(z - 3) + wK(z, y)}

Hence we get

3 -~ ~
é} 8(y —x,) B, Iy oo, x,/Ul

=- [dz Iy, .o, %,, 2/UHU (R)6(z - y) + wK(z, )}

(3.4)

Here we remember again that ¥ means vector from
R%, Z=(w,2), U'(2)=(8/8w)U(2). Further restric-
tions for n-point functionals will be obtained if we
calculate higher derivatives of (3. 2).

Now we consider the special case of the n-point

functionals, namely
T[x1, e ,xn/j] = J[sz ces ’xn/U] ‘U:wj(xh £int{w)?

(3. 5)

where / ;, is fixed function and j plays the role of an
external source appearing in the usual formulation
of QFT. We get from (3.4)
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n
8 ~ -~ .
1;1 5(y ~x,) B—w—k Tlxy, ..., %,/1]

== [dZ Tlxy, ..., 2, 2/H(G0) + [ § @)z = )

+wK(z,y)}. (3.6)

n-point functions connected with given n-point func~
tionals are generally defined by putting the function
variable equal to zero,

We have, e.g.,
TGy, 2,)= TRy, o £,/0 oo -

From (3. 6) the following equations are obtained
for them:

(3.7

¥ 6y =x) = T@,,.nn,x)
k:.il y % 5 1 n
20 DY f )8z =) + wK(z =)}
(3.8)
The unnormalized functional 7, generating time-
ordered Green’s functions with vacuum divergences,

is defined by means of the functional J [see (2.1)] as
follows,

=—fd2T(3;1,...,

Tlj1=JU) ’ U=wj(x)+ [ int(w)

(3.9)

The n-point functionals connected with T are, as
usual, defined as

TDci,...,x"/j]=G"T[j]/ﬁj(xl)---5j(xn). (3. 10)
Hence and from (3. 5) we get
T[)Ci, ces ,xn/j]

=fdw(n)w1- . wnTWD oy "/]] (3. 11)

We obtain a similar expression for n-point functions,

T(xl,...,x)

n

= fdw<n,w1' cew, (3.12)

TEpyeeu,X,)e

n

The last equality reveals the true meaning of the
n-point functions T(xi, . ) defined on the Car-
tesian product of n five- d1mens1ona1 spaces R?.
n-point functions T'(xy,...,x,), after removing vac-
uum divergences, amputating, and passing to mo-
mentum space, describe scattering processes.

From the definition of the z-point functions

T@,.. X o) one can derive the other’s relations
to the n-pomt functions T(xy, ...,x ) e.g.,
n
T, eee, X%, 000,%,)
= [ dw dewgywhys - - w, (3.13a)
X T(W,X3%1s o 0 e J?n),
TGy ey Z)==i[dw TGy, oK) (3.13b)
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It is easy to prove with the help of {3.13) that (3. 8)
leads to Schwinger’s equations for the z-point

functions T'xy,...,x,).

The equations of the type (3.12)—(3.13) may be
treated as a kind of consistency condition which does
not depend on dynamics imposed on the functions
Ty, ... ,fn) fulfilling Eqs. (3.8). However, in the
first approximation one may try to solve the Egs.

(3. 8) without these conditions. For lowest n-point
functions we have the following equations

5(3) —xl) 8—(% T(;f\i)

=— [dZ T(y, 2/ (o @)6(z =)+ wK(z,9)}.  (3.14)
Because of Poincare’s invariance

TGy) = zf 8¢ 6wy — @ (x))) explioKe/2) +if ;,4(0]

does not depend on xy. Introducing
8 oy
3(,:1— T(X1) Zf(wl) (3. 15)
we rewrite (3. 14),
6(y — x;)flwy)
== [dZ TG, D]/ 1n(W)(z — ) + WK (2, y)}.
) (3.14")

Here %, = (wy, %4), 2=(w, 2), and flw) is the unknown
function of w. Fixing f in some way, one can try to
find from (3. 14’) the two-point function T, %,) in
agreement with relativistic invariance, with spectral
condition and symmetric condition

T&y, %) =T®,, %)), (3.16)
and with the constraint [see (3. 13b)]
— 70
Z /dw T(xi,xg) f(Ct)1) (3. 17)

The last property suggests that a kind of self-
consistent method can be used to calculate the two-
point function T(,,x,). We postulate £ (w) and cal-
culate from (3,14°), T (£,,%,). After that we

calculate

FUD () = f don T o), (3.18)
and from (3.14) we calculate T(]“)»Z) If such a
procedure is convergent we see that

1]132T‘1’(x1,x2) TGy, %) (3.19)
fulfills Eq. (3. 14’) and condition (3. 17) with

ooy =—z111f£ o, /dwz TP (R, %y). (3. 20}

4. THE STRUCTURE OF THE FUNCTIONAL G;

The functional G;[U] introduced in Sec. 2 defines
the generating functional Tlj] [see (2. 32)] which
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does not contain the vacuum divergences. Because

of (2. 30), the n-point functionals
G,%,...,x /U]
4.1)

= 6nG,[U)/6U (ky) + + + 6U )

fulfill [analogous to Eq. (3.2)],

Gy, ..., %,/UI
= expli(h, G ;lws + Rlxy), x50 . 05w

+hx,),x, /AUY, “4.2)

Differentiation with respect to 2=0 now gives

if(y)G;Ey, ... ,J?n/U]

+Eé(y xk)

""/‘dZGj[;C.i,...,

x{U*(2)6 (z —y) + wK(z ,y)}.

G [X1, .o ,36,,/U]

£, z2/U]

(4.3)

However the n-point functionals related to the
functional G; have no simple connection with n-point
functionals and functions of the functional T[j].
Another new functional Z defined by the relation

JLU=exp(Z[UI), (4. 4)
exhibits the other features of the functional
G;lUl=JlUul/JlA ;01
= exp(z[U])/exp(Z[A;0)). (4.5)

We can expand the functional Z[4;U] in a Volterra
series at U, because from (2. 26)

(A;UMw, x} = Ulw, x) = wjlx).
We get

Gj[U]=exp{-— i (_n})"

n=1
x [d’?(n)zwi, ey X /Ul () e - - w,j(x")} ;
(4.86)

Since Z from (4.4) and (2. 5) has the following sym-
metry property,

z{U]= -’5 hKR+ Z[AU], 4.7

n-point functionals Z[%,,...,%,/U] fulfill the same
equations as (3.4). The n—pomt functionals

z [521, cee ,ﬁ?n/j] = Z[ﬁ?l, cee ’xn/U]lU:wj(x)* Lint(“’) . 8)

fulfill the analogous Eq, (3.6)
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< 8 _a a . 1.[31=6G,lU1],_..
Z,l‘é(y—xk) @zbci,...,xn/]] vli1=G;l ],U—wﬁ“m

T u A u
R . =eXp{—Z) = [ di, 2y, ..., 7 /)
=—/dzz[a?l,...,xn,é/j]{(j(y) Hoon! / () 21%4

X wyj Gey) « --w,j(x,,)}, (4.10)
+f 1 (W))o(z — y) + wKz, y)}. 4.9)
13, Hanékowiak, J. Math, Phys. 16, 1524 (1975).
2J. Harckowiak, Preprint No, 333, University of Wroclaw
Now we see that (1975).
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A geometric theory of charge and mass
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A geometric model of a charge is constructed by defining several geometries on the same spacetime
manifold. A Riemannian geometry describes the vacuum. On the same spacetime, two Weyl geometries
are constructed for the charge description. The geometries are constrained by a variational principle.

Energy conservation requires the equality of active and passive mass. Chargeless particles have essentially
no mass. The treatment of radiation relies on the approximate nature of the wave equation. Variable mass
terms in the wave equation cause the 25-2P levels in hydrogen to separate by 30 000 Mhz. This

unobserved transition together with the lack of spin sets a limit to the correspondence of the model to real

electrons.

1. INTRODUCTION

The general theory of relativity provided support for
the viewpoint that the course of events which physics
describes can most simply be expressed as the result of
geometric constraints on a spacetime manifold. This re-
port extends the geometry and the constraints so that
the geometry itself provides the physical description of
charges.

Basic to the model is the observation that several dif-
ferent geometries can be constructed on the same mani-
fold. On spacetime a Riemannian geometry is defined to
describe the classical gravitational vacuum. Several
Weyl' geometries can then be defined to describe the
charges. We use two Weyl geometries per charge. The
metrics of the Weyl geometries are conformal to the
metric of the Riemannian geometry. The conformal fac-
tor is essentially the density of the charge. Since char-
ges in matter are localized, nonzero lengths in the Weyl
geometries occur locally. Thus the Weyl geometries are
trivial except in the neighborhood of the charge. The
only geometry to have long range effects is the vacuum
Riemannian geometry.

The number of Weyl geometries per charge was de-
termined by the effects in our theory caused by gauge
dependence. The notion of gauge and of gauge invariance
was introduced by Weyl and is implicit in his geometry.
Our theory relies heavily on the gauge dependence of the
field equations. This dependence requires a unique
gauge to be determined by the physical interpretation.
Gauge variables are present in both the form of the
electromagnetic current and the form for the mass. The
current is linear in the gauge terms and the mass is
quadratic. The physical interpretation requires the
gauge terms in the mass formula to remain, but the
terms in the current must vanish. To do this, we use
two Weyl geometries to describe the charge, their
gauge terms being additive inverses. This device gets
rid of the unwanted terms in the current since they are
linear, and cancel, yet keeps the required quadratic
terms in the mass formula, Therefore, to have the
proper physical interpretation, two Weyl geometries
are required fo describe a single charge,

The conformal scalar curvatures of the Weyl geome-

tries must be modified to use in the variational principle,

The field equations consist of a Klein—Gordon type equa-
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tion for the charge motion and the source equations for

gravity and electromagnetism. Conservation of energy

and charge follow from identities. All the equations are
covariant, but none are gauge invariant.

Inherent in the construction of a Weyl geometry is an
electromagnetic vector potential. This is assumed to
contribute additively to the total potential of the vacuum.
To avoid self-energy problems, the potentials of the
charge geometry is assumed to be due to other sources.
Thus radiation is carried away by a different potential.
These assumptions are not time reversal invariant.
Furthermore, radiation and conservation of energy to-
gether require a change in the state of the charge, since
energy radiated must be lost by the charge, By assump-
tion, only the external vector potential can change the
state of the charge. Therefore, to treat radiation, we
must assume the wave equation is not exact, relying in-
stead on the source equation and conservation of energy
equation to describe the radiation,

The usual concept of mass includes two separate no-
tions: mass as the source of gravity and mass as inertia,
known as active and passive mass, respectively.? Pas-
sive mass enters in the wave equation; active mass oc-
curs in the energy equation of gravity. Each type has a
rest mass which is a constant in the theory. Their
equality arises as follows. The energy an atomic elec-
tron absorbs from the external field changes its active
mass. The amount of energy lost in radiation can be
found from the conservation of energy equation and the
electromagnetic source equation, These two energies
must be equal if an atom that absorbs radiation and sub-
sequently emmits radiation is not a source or sink of
energy. The formula for the radiated energy contains
the ratio of active rest mass to passive. This ratio must
be one if the atom is not a source or sink of energy.

This is a theory of electromagnetic charges, i.e.,
electrons. But the theory is spinless, so the charges do
not reproduce the behavior of electrons. The question of
many charge statistics is tied to spin, so we treat only
the single charge. The fine structure of spectra is also
linked to spin so the details of spectroscopy cannot be
reproduced. Further evidence of this failure is the pre-
diction of a 30 000 Mhz shift in the 25—2P levels of hy-
drogen. This shift is due to variable mass terms in the
wave equation,
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The difference with previous geometric models of
charge are apparent. We avoid singularities by spread-
ing out the charge as in wave mechanics. Geometric
models of point charges have used unusual topologies to
represent the inherent singularities of point sources,
for example, the multiconnected topology due to
Wheeler. ® Breaking gauge invariance is basic to our
approach., Weyl? required this invariance in his theory
of electromagnetism. Flint® used the conformal factor
in a Weyl geometry as the square of the wavefunction,
but failed to employ the concept of many geometries on
the same surface.

Weyl’s geometry has appeared to conflict with funda-
mental atomic phenomena. Given an atomic clock and
the speed of light, a well-defined unit of length is de-
termined., Weyl’s geometry rests on a concept of inde-
terminate length. The way to avoid this conflict is to
introduce several geometries: In one atomic lengths are
fundamental; in the others Weyl’s geometry holds. In
our theory, the Riemannian geometry of the vacuum
measures atomic lengths, and the Weyl geometries are
localized to atomic dimensions, as discussed above.
Dirac® has used two metrics: one measuring length with

the atomic standard, one to which Weyl’s theory applies.

He uses the Weyl geometry to describe effects of the
large numbers hypothesis.

Since Weyl’s geometry may be unfamiliar, we provide
a quick derivation of the results needed here. Following
this is the variational principle and the discussion of the
field equations.

Il. GEOMETRY

Riemannian geometry in the limit of zero curvature
reduces to Euclidean geometry. In particular, vectors
of equal components have equal lengths. Weyl’s geo-
metry retains curvature in the limit of a Euclidean
metric. The lengths of two vectors located at points on
the manifold separated by coordinate differences, dx°,
differ according to the formula

dl= la- dx), (1

where @° is a vector and [ is the Riemannian length of
the vectors. Thus, even when the Riemannian curvature
is zero, the affine connections cannot be null. The vec-
tor a° was interpreted by Weyl as the electromagnetic
vector potential,

To derive the affine connections, recall that, in
Riemannian geometry with metric g5, the equation
d(12) =0 suffices. For a vector with components V7, this
means

(8UgaB)V°’Vde° +gaB[60(Vﬂ‘ V) ]dx® =0. (2)
In Weyl’s theory,
d(?) =P 2a- dx) =2a,g,,V*VPdx®. 3)

If (- 2a, +3,)g,, replaces 3,g,, in the formula for the
Christoffel connections C%,, we have the affine connec-
tions I'g, of the Weyl geometry,

Weyl did not want a conformal transformation of the
metric to affect the intrinsic geometry of the manifold.
It is clear from the above derivation that the following
leaves the affine connections unchanged,
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Zus=Ugys and @,=a, +3(@,In0). (4)
That follows because

U(=2a, +8,)g45= (- 28, +04)Zap) (5)
and the factor U cancels out of (3).

Calculating the Weyl scalar curvature W, using the
affine connections I'y, with the metric g, yields

W=R+6a - 6((-8)*/%a),, /(-z)/? (6)

where’ g=det(g,;) and R is the Riemannian scalar cur-
vature of ... In terms of the metric g,4 the quantities
become

Tg=Trg, W=W/U, a,=a,+3(,]nl)
and
ofaB:aa,B—EB,a:aa,B—aB,a:ofaPS @

Combining equations to obtain the conformal scalar
curvature, we have

= W 6@  6((-g)/%@),,
Reg-7 *= e ®

The last term on the right becomes a divergence in the
action principle integral; thus it has no affect on the
field equations and is dropped from the following
equations,

Assuming the vector @° has pure imaginary compo-
nents, and ¢° has an imaginary part, R is kept real by
replacing the following:

@ —lal’, a*—|a|’, and «,  =0. )
Altogether,
R=(1/U)R+6]|a|*-6]al"), (10)

where R is the scalar curvature of the metric g,,.

The last formula for R must be modified to serve as
Lagrangian. To do this, use the replacement,
a,=a,+3,In|u| ~d,=a,+3,nu, (1)
where |u ]2 =U.
Therefore, R with this change is the scalar curvature
when u is real,

The modification can be described in another way.
Notice that @, is the result of a conformal transforma-
tion from the vacuum metric to the charge metric. The
inverse should give the vector potential that the charge
would predict for the vacuum, call it g,

a,, =T, -3 In|u| =a, +3 Inu-3,Inlu| =a,
+4Imo lnu,

where i=,=1 and ImX = (X — X*)/2i. (12)

If we take a,, as the vector potential of the vacuum,
the modification is to replace the q, in the term 6a%/ U
by (a,, - iImd inu), in (10). From this point of view it is
clear R is no longer the scalar curvature since we use
two different gauges for the same potential in the formu-
la for R. To emphasize the change, we define

S=Q/U)R+6]a,|" -6]a|). (13)
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Notice that if 2 Weyl geometry and the Lagrangian S
are used for the vacuum, then the constraints on the
vacuum metric are unchanged if #=1, since then S =R.
Furthermore, this is a rigorous way of introducing a
vacuum vector potential to the geometry., The total vec-
tor potential in the vacuum ¢, is assumed to be the sum
of the charge geometry potential plus a vacuum geome-
try contribution v,

¢a:nva+70' (14)

The field equations depend on which form of q, is varied
in the Lagrangian; we chose a,.

The vector g, of Weyl’s theory must be allowed only
purely imaginary numerical components. To justify this
assumption, consider a point charge electron in circular
orbit about a point charge proton.® Calculate the change
in length after one revolution. Select those orbits for
which there is no change,

<Pdi/1=2mni, where n is an integer. (15)

For the case considered, «, has only a time component,
— ke/r, where k is constant, e is the proton charge, and
7 is the distance from the proton. Then, applying clas-
sical mechanics to cancel radial forces and using (1),
we find

r=—n?/ mk. (18)

If 2=z i¢/7,*° then the radii selected are those of Bohr’s
model of the hydrogen atom. This is the justification for
assuming ¢, is purely imaginary.

I1l. FIELD EQUATIONS

The field equations result from a variational principle
constructed from the scalar curvature R of the
Riemannian geometry, the modified form?*! S of the
curvatures in the Weyl geometries, and the square
of the electromagnetic field. Only the case of one charge
is derived; thus two Weyl geometries are needed, la-
beled by a preindex. The Lagrangian is

L=(R+cf3)- g)lf2+Z;b,S(— B, a7
J=

where ¢ and b are constants, and f,,= ¢, s~ ®, ,, Where

¢° is the total potential in vacuum,

The field equations are covariant, but not gauge in-
variant. This last property is used in the physical in-
terpretation. Specifically, the equations are written
with these substitutions:

u =;0expli ;p°x) and ja,=aj-ip forj=1,2, (18)

where the vectors ;p are constant, and «/ is the same
for both particle component geometries., A more com-
plete description may require a more general transfor-
mation, Each u may be thought of as an amplitude mod-
ulated plane wave. The field equations are labeled by
the function varied,

M*Eq.: 0=(R/6+|,a,1")
(o Q) + )8~ g1 /2(ah +3,) o,
(19)
aEq.: j°‘——1—F°‘° = ZE[ * .U+ Im(p*3e p)]
4 P =4z ;U—q]_ﬂ jl‘) i i Fn
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where q=3bi/4nck, (20)

gEg.: 0= (1 + b;U)G"‘B -8k T2
=1
2
+b2{(g*0,U - Ui #)
Jj=1

+6,U(;p% p°+2ia’ “Im(3® In ,2)

-3®n p*3®1n ;v) ~ 3 ;Ug™

X [(,p)? +2ia’. Tmdln v - |3ln 2|°J}, (21)
where
au=us°,, Foef=fab/p G¥ =R _1Rg™ and
Te = _ (1/4m)(F4F?, - 1g*tF?), (22)

We have kept the notation ;U because ;U= ijvlz. The
#* equation may be rewritten in a simpler form,
0=[R/6+(pf=2i pea’ +a'% Jw+2a 30+l . (23)
The charge density of the source is spread out over a
volume of space as a glance at (20) shows. If one sec-
tion of this density were to be repelled by another sec-
tion of the charge density, there are no external forces
which could hold it together. It must be assumed that the
charge reacts to that part of the vector potential which
has other charges as its source. Accordingly, a’, is
assumed {o be the external vector potential and y, is
assumed to be the vector potential arising from the
charge itself. This assumption destroys the time inver-
sion symmetry of the theory. If a charge absorbs energy
from the field corresponding to a’,, the inverse process
is the emission of energy from the charge to the field
due to a',. This means y, and «’, are the same, But
then @’ has the charge as part of its source and the
charge blows up. Therefore, time inversion symmetry
fails.

There are two identities which must be satisfied.,
Since F*® ig antisymmetric, the divergence of the cur-
rent §° is identically zero,

2
%, ¢ =0=2Im( 3 ). (24)
i=l
Together with the x* equation, this implies
2
FZ}(,.Ujag);ozo. (25)

Care must be exercised so that u and ,q,, satisfy this
equation,

The divergence of G*® is identically zero, so

2
0=—8nck’T2E ,+ bj};l: LU, s(6%5 + R + p= p
- 38°°0pF) +6if P Im(w*a, ;v)
—6i jU' aq’s Im(a]_n jv) -_ 6(8 to jl‘*aﬂ) iU

2
- 383, ]),,). (26)

IV. MASS AND CHARGE

The mass M and charge — e are defined as the volume
integrals of the time components of the particle stress—
energy tensor T2® and the current vector j°, respec-
tively:
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M= [TPdx and -e= [ j'd%, 27
where
- 87T =G" +87T%. (28)

Since the amount of mass and charge is defined in terms
of one component of a tensor and vector, the result de-
pends on the coordinate system of the observer. The
only well-defined coordinate system is the rest frame
of the charge. Therefore, we assume the expectation
value of momentum is zero. However, the kinetic ener-
gy of the charge need not be zero, for example, if the
charge is the electron in a one-electron atom. The
treatment is further simplified by considering the
wavefunctions ;v to be eigenstates of energy. Equation
(25) will then be satisfied if &', has only a time compo-
nent. The mass is spread out over a volume much lar-
ger than the Schwarzschild limit. This is obvious, since
nuclei are the tightest binders, and atomic electrons
are spread out over volumes of radius many times big-
ger than the Schwarzschild radius. Thus we assume

g™ is the flat space metric and

g 0=1% 0 v and |8M.v[ « ijk- (29)

Before evaluating the mass and charge, certain prob-
lems with the form of the current must be eliminated,
If the particle at rest is to have no current, the follow-
ing terms of (20) must be zero:

OzlplU‘I'zsz- (30)
Assuming equal normalization of components, we have
O0=,p+,p. (31)

By thinking of ,# as amplitude modulated plane waves,
the carrier waves are complex conjugates of each other.
Thus,

J lu*zudsx:flzv*zvexp(Zi 2p'x)d3x. (32)
The wavelength of the plane wave will turn out to be
roughly 7%/m, which is 10-2 A for electrons. Changes in
.v* ;v are on the order of angstroms, so the integral is
approximately zero. This near orthogonality mimics
that of the spin components in elementary quantum
mechanics. Here, however, the wave equation (19) does
not mix spin components, so there are no spin effects,

Returning to the mass and charge evaluation, using
(31), and assuming b,U and R negligible, one finds

M= 3bV/4m)(p")? + (31)/4W)/}1’*A vd3x, (33)

where 3V =[ Ud®x, (p")2=(;p")?, dv=v",,, and the sur-
face of the vOlume of integration is far from the charge
so that divergences in TJ° integrate out. The constant
term on the right in (33) is the active rest mass M,

M,=(3bV/4m)(p")>2. (34)
Keeping only the lowest order terms in (19) implies

7= p*=p. (35)
The charge is approximately

—e=3V{w+,w), (36)

Multiplying by (jw — ,w) implies ;w =, =1w.

To evaluate the constants of the theory, assume (19)
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is an approximate form of the Klein—Gordon equation
[m?/ 12+ (- ieA,/ i +3%) (= ieA%/ i+ 8°) v =0, (37)

where A  is the electromagnetic vector potential. There-
fore,

pr=m?/n? and k=—ie/ . (38)

Note that this value for k2 agrees with the Bohr atom
treatment in Sec. II. Comparison of Eq. (21) with the
general relativity result for electromagnetism, shows
ck®= -1, Now the constants can be determined:

w=+m/l, bV =+ 477/ 3m, (") =£mM,/K?, ck’=-1,
k=~ie/li, and (p°P=w?+ (p")?=(m?*/ n>(1+ M,/ m),
where m >0, (39)

Notice that negative w implies negative rest mass M,
since (p")* >0, Antiparticles are well known to exist,
and can be interpreted as negative energy states. To
include such species, we need only expand the two Weyl
geometry theory to four, two having positive w and two
negative. Wave components with opposite w’s can be
considered orthogonal in many cases.

f;v*avdaleeXp(Ziswt), (40)

where [ is a function of position and time, ¢. If the
function I does not change appreciably in the span of
time on the order of 1/w=10"%%s, then, averaged over
a few such time spans, (40) shows the effective ortho-
gonality of components with opposite w’s.

A four component wavefunction is most natural to
describe charge. The need for a two-component theory
can now be seen to arise because the constant vector
p° is needed so that the rest mass of the charge is non-
zero, (34), but yet the electromagnetic source cannot
have a constant part essentially independent of the
wavefunction, (20). The mass depends on the square of
1°, and the constant part of the current is linear in p°.
Thus, having two components with vectors ;p° of equal
magnitudes, but opposite directions, cancels the unwant-
ed terms in the current, but retains nonzero rest mass.
Two more components are needed to include antiparti-
cles in the description.

Two rest masses, m and M,, appear in the equations;
one is the source of a gravitational field, the other
measures the inertial resistance to applied force in the
wave equation. The difference in these two masses has
nothing to do with the Eotvos—Dicke experiment and the
equivalence principle. In the absence of electromag-
netic and gravitational forces, it is evident from (19)
that charges follow straight line paths. Covariance of
the equations requires that in the absence of electro-
magnetic forces, charges follow geodesics. Thus the
path of a charge unaffected by electromagnetism is in-
dependent of any intrinsic characteristic of the charge.
These predictions are the content of the equivalence
principle supported by experiment. Thus, first, the
theory obeys the equivalence principle. Secondly, the
“gravitational mass” m, arises from Newton’s equation

ma=mK/ v, (41)

where K is constant and # is the distance from the
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gravitational source. It may be argued that m,, the
inertial mass, is the mass m. But the active mass M
is a factor in K, and is definitely not m,.

For a bound charge, (33) can be put in the form

k2>
Z A} vd3x.
. ]vdx

For a one electron atom, the vector potential may be
assumed to have only a time component, which is in-
versely proportional to the distance from the nucleus.
Application of the virial theorem implies

M=M,-2{k.e.),

where (k.e)= %é]}v*(— (42)

M=M,-2E, where E is the binding energy. (43)

Discussion of this effect will be delayed until radiation
has been treated.

The discussion of mass would be incomplete without
noticing that chargeless particles are essentially mass-
less in this theory. This follows because charge null
implies k null implies ;o null, so

m =TH(R/6)*/2,

Mesons are “strongly” charged even if neutral electro-
magnetically. A discussion of strong charges lies be-

yond the scope of this report, so (44) does not contra-

dict observation.

(44)

V. RADIATION

The conservation of energy equation is (26) with ¢ =0,
which we use in the nonrelativistie limit, (29). By using
(20), (22), and (30), two of the terms combine,

2
BT T35 + 22601 o f ¥Im (%3, 0) = (87/ k)% ~ /)
Jj=

=81/ R)jgof ¥ =87,T%,,, (45)

where ,f**=y%® —v»* and ,T2 is the electromagnetic
stress—energy tensor (22) calculated with  Fo8
=(1/k),f *8. In the derivation of (45), we used the re-
sult that a; is sourceless, as previously discussed. The
cancellation involves the rate of doing work on the
charge by the field due to a’;, and the rate that energy
is lost by the field. To see this notice that the term

of ®,5 is the Lorentz force. The energy balance between
charge and field due to 4’ occurs in detail.

Of more interest is the energy emitted from the re-
gion of space containing the charge. So we integrate
over space, assuming the volume of integration large
enough so that certain surface integrals vanish. The
expression for the rate of change of energy in the field
due to y,, in the volume of integration becomes

.o‘_ b
£ 81r2~1dt

f [jU(GOO +R00 +6(,‘P0)2 - 3g00p2
- 6ig®a" Im(2In ;) - 63° ¥*3°  +3g% |3 | Jd*x.
(46)
To simplify this, use (23) multiplied by - 3 ;v*, (30),
assume ;v is negligible on the surface of the volume of
integration, and

°=iw v, where w=m/i>0. 47)
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All this implies

50 (pO)? -

= ldtffSU(p) w?))d®
_ d 3 48
- VOE) 51U (48)

If ,v satisfy (19), then d/d¢(/;Ud®x)=0, implying no
radlatlon This argument requires more faith in the
wave equation than is justified. Terms for the spin must
be added before the equation can be regarded as exact.
We do not consider it accurate enough to deny the deli-
cate process of radiation to proceed. With the agsump-
tion that the coefficients in an eigenfunction expansion
of the wavefunction depend on time, we explore the con-
sequences of the source equation (20),

Assume a two-level system,
o= [clylexp(ielt) + czyzexp(iczt)]exp(iwt), (49)

where ¢, are real and y, are orthogonal energy eigen-
states of (19) normalized to V/2. Then ¢+ cZ=1, so
define 6 such that

¢,=sinb, c¢,=cosb, & =6c, and &=-06c,. (50)

Even when radiating, the charge of the electron in an
atomic system should have a constant part,

, d,r.
~&é=0= 2 {[j°a%),

'“th (w [ Ud®x +e,¢} V +ec V) (1)
Therefore,

Zid?fUd%:—%chczé(el—eZ) (52)
and

po—Mog,. 5 53)

Ll clczeﬁ(el —€2). (

Integrating over all time, the energy liberated is
(M,/m)hle, —€;). In order that the atom not be a source
or sink of energy, this value must agree with (43).
Therefore, noticing that V changes in (34),

M,=m (54)

An evaluation of the current shows the emitted radi-
ation has frequency |¢, —¢,|. It is well known that ab-
sorption of energy from radiation occurs at the same
frequency. The total energy absorbed and the total emit-
ted in radiative transitions divided by the frequency of
the radiation is constant, k. Electromagnetic radiation
from atomic electrons appears in quantized energy pac-
kets, in agreement with this result.

VI. AN ENERGY LEVEL SHIFT

The effect of the extra mass terms in (19), p+ a4’ and
a’?, may be treated as a small perturbation. Their ef-
fect is greatest when a/, is the largest, Therefore, as-
sume a one-electron atom. To first order the energy
change will be

AE

Z)f Ua"d®x (55)

== 2mV
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The term linear in p° is zero by (30). If o', has only a
time component, — ke/7, then

72/ 1 1 12 U
AFE= W<F> , where <F> = vg fﬁdax. (56)

Assuming both wave components are the eigenfunction
belonging to the same level in hydrogen yields a differ-
ence in AE for the 25—2P levels

(57)

The equivalent frequency shift is 3x10* Mhz, A shift of
this magnitude is not observed. We conclude that the
theory does not represent the details of atomic spec-
troscopy accurately. This is not such a bad failure for
a spinless geometric theory of charge.

AEg - AE, = mZ%?/12, where o= e/,

VII. CONCLUSION

This paper has discussed a specific geometric theory
of charge, conceived from the viewpoint that geometry
itself most simply describes physical events. The sim-
plicity of the geometry is compromised by the necessary
modification of the Weyl scalar curvatures. The physics
lacks spin and related concepts. Yet the theory de-
scribes, with some accuracy, phenomena ranging from
the astronomical, with general relativity as a limit, to
the minute with a treatment of electromagneite
radiation.
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The large time behavior of the superfluorescent decay is investigated by the inverse scattering technique.

1. INTRODUCTION

This paper is devoted to the study of the large time
behavior of the electric field emitted by a completely
excited finite length sample of nondegenerate two-level
atoms decaying in the vacuum (superfluorescence). This
process is described, at the semiclassical level, by the
equation

Py + Oy = sing, (1.1)

satisfied by the Bloch angle, when the cooperation time
7. and the cooperation length I, are taken equal to 1. We
assume a small initial perturbation € of the unstable
equilibrium configuration, which turns out to be a key
step towards the solution of the problem, Indeed, solv-
ing Eq. (1.1) by the inverse spectral transform, the
Marchenko equations can be treated in a perturbative
way, the smallness parameter being et!’/4, Our result
expresses the electric field leaving the sample as £73/4
times an oscillating function of ¢, which appears to be
in reasonable agreement with numerical computations.

2. THE INVERSE SPECTRAL TRANSFORM

We consider the interaction of an electric field with a
two-level atomic system, described by the Maxwell—
Bloch equations

pt:—‘(c,—/V, /Vg:—é-p’ €t+5x=pa (2°1)
where P, A/, and £ are the polarization, the population
inversion, and the electric field envelope respectively,
and the third row is the wave equation in the well-known
slowly-varying envelope approximation, describing one-
sided (from left to right) propagation.?

By putting 2= sing, /= cosp, and £ =¢,, Eq. (2.1)
reduces to the sine-Gordon equation in the coordinate
system relevant for nonlinear optics,

@it + Oy = sing. (2.2)

We impose the physical requirement ¢ — 7 (mod 27)
for Ix| -, which means that the atoms are assumed
to occupy the ground level at infinity.

Equation (2.2) may be solved by the inverse scatter-
ing method, with the associated linear problem

R 1 i .
—z(g +E cosgo) -1 sing - (¢, + ¢;)
V,= . v
——z—sin(p+i(<ﬂ +@,) i .§+Lcos ,
Iy 2\Pyx ¢ Iy: @
(2. 3a)
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i cos@ sing
V=Tt sing - cose |¥ (2.3p)
This system follows, by the appropriate change of
variables, from the analogous one given by Ablowitz

et al.’ for the sine-Gordon equation written in light-
cone coordinates. It looks very similar to the one con-
sidered by Kaup® in his treatment of the same equation
in laboratory coordinates., We now introduce, for real
£, the usual Jost solutions of (2. 3a)

¢(€,x)-'[(1)]exp(— ikx), x— — o,

(2.4a)
a(i,x)=i02¢>*(€*,x)—’[_ ?]exp(ikx),
ZP(&,x)"[(l)]exp(ikx), x= + o,

_ 1 (2. 4p)
ll)(ﬁ,x):iﬁzw*(i*,x)—’[O]exp(— ikx),
where

k=PR(E)=E~1/4¢, (2.5)

and

o 0 -¢
=l o
is a Pauli spin matrix.

We note that, with our choice of the asymptotic con-
ditions, ¢(£,x)exp(ikx) and ¥(£, x) exp(~ ikx) are analytic
functions of £ in the upper half £-plane. The proof es-
sentially follows the same lines of Ref. 3 and will not be
repeated here. For some remarks concerning an al-
ternative choice of the asymptotic conditions, see Ref.
4,

Let us assume, for ¥(£,x), the triangular
representation®

(&, x) =[(1)]exp(ikx) +fw ds [K(x,s)

+—§M(x)L(x, s)] exp(iks), (2.6)
where
- sin% cos%
M(x)= 2.7
cos% sin-(g—

Proceeding along the lines of Ref. 3, we get
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2.3 2@+ @)
ax oy 2T
Yoo K(x,)
1 9.0
—2@it @) o3
0 ZCOS%
= L(x,y), (2.83.)
—Zcosf 0
2
2 _2 _1,
ox _ay 27t
) L{x,)
A 2,2
2¢ ax By
0 %cos%
= K(x)y)’ (2'8b)
—%cos—(g— 0
together with the conditions
lim K(x,y)=1im L(x,y)=0, (2.9)
y= 40 y= 4o
K](x)x):é((pt"’-(px): (2-10)
L1(x,x):—%cos-€g-. (2.11)

The scattering data are introduced, in the usual way,
by

o(E, x) =a(E)y (&, %) + bIE)P(E, %),
O (£, x) = a(E)P(E, x) + B(EVD (£, %).

(2.12)

The Marchenko equations are now readily written down
by

[_(1) é]K*(x,y) +[$]F‘°’(x +y)

+ f: ds[K(x,s)F'O(s +y)

+L{x,s)F (s +y)]=0, (2.13)

L2t [Y]rowen

+ [ 7 ds[K(x, ) FO(s +3) + Lix, ) F (s +)] =0,
(2.14)
where
L(x,y) =2M(x)L(x,), (2.15)
and
F (g )—2%-’; d£< ) p(£) explik(£)z], 0.16)
p(e =28,

the contour C starting from £ =~ < +40*, passing over
all zeros of a(£), and ending at £=+'+i0",
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3. THE SUPERFLUORESCENCE INITIAL CONDITIONS

We now solve the direct scattering problem (2. 3a)
under the initial data

m, ‘x| >1,

¢(x,0)={0<€<<", |x| <1
=7 (T=€)8(I% = x%), (3.1)
@,{x,0)=0. (3.2)

Physically, this choice is intended to simulate the
spontaneous cooperative decay of a finite sample of
completely excited atoms in the electric field vacuum
(¢, =0). The small initial Bloch angle € provides a
perturbation of the equilibrium position, necessary for
the decay process to start. We want to obtain some
information about the behavior of the electric field leav-
ing the sample, i.e., of ¢,(I,t). As a matter of fact,
this quantity does not depend on the values of the solu-
tion for x > I, because—as already emphasized—Eq.
(2. 2) describes only propagation from left to right.

We quote here only the relevant results (for details
of derivation, see Appendix A):

al) = exp(2ikl) [<w+g+741.>2

2w(w + £ + cose/4£) E
2
X exp(2iwl) cosz-fz- + (w +£- %)
X exp(— 2iwl) sin? —;— , (3.3)
b(&)——z(w+g+ ><w+g 1)
4§ 4t
sin(2wl) sine
2w(w + £ + cose/4¢)’ (3.4)
where ,
= _<2+ : +*cose>12 (3.5)
w —w(‘t;) = E ng P . .
It turns out that a(£) has no zeros, because Eq. (3.5)

is not consistent with the requirement a(¢) =0. Indeed,
by solving Eq. (3.5) for &, it is easily seen that the
product of the roots is € independent; on the other hand,
by writing

€ _ 2 1 2
cos’y =w —<£—4g> ,

(3.6)
1\,
sm2 <§+4E)-w,
the condition a(£) =0 factorizes into the equations
2 i _
2t + 2wt +35 cose=0, (3.7)

4£2 cose — ditw cot2wl +1=0,

for both of which the product of the roots depends on g,
thus contradicting our previous statement.

Equation (2.16), recalling® that p(¢,1) =p(£, 0) expl(it/

2¢), then takes the form

sine { ° i\"
“om f dﬁ(‘z?)
explik(£)(z = 21) +it/2E]
1/4£% £ cose — (iw/t) cot2wl

F(n)(z , Z) —

(3.8)
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Before concluding this section, let us consider the
following choice of initial conditions:

@lx,0)=70(x* = 19), @,(x,0)=€0(l*-x%), (3.9)

which describe the decay from the unstable equilibrium
position stimulated by a small initial uniform electric
field. We point out that these conditions give rise to a
rather different structure of the scattering data.

Indeed (see Appendix A) one finds in this case

2ikl 2 .
a(§)=(Q T gj{f< 4i£)2)+ez , [% exp(— 2i)

+ (sz +E +4—1£->2exp(2i§2l)], (3.10)

1 .
b= ;fj&);jigﬂ sin(290), (3.11)
J

4. DERIVATION OF THE ASYMPTOTIC SOLUTION

where

1 2 €2 1/2
Q=[<§+—4—§> +“I] ,

and it is now possible to show that, for any ¢ and [,

the equation a(£¢) =0 is consistently satisfied. The solu-
tion of the corresponding Marchenko equations [com-
pare (2.16)] thus becomes considerably more compli-
cated, due to the appearance of multisoliton contribu-
tions together with the continuous spectrum. At the
present time, we are not able to explain the physical
origin of such a striking difference, as compared with
the preceding case. Nonetheless, bearing in mind that
we are interested in the large time behavior of the elec-
tric field leaving the sample, we cannot a priori ex-
clude that, for x— 1«1, the situation is in fact similar
to the one originated from the conditions (3.1) and (3. 2),
which will be discussed in the next section.

(3.12)

It is known that, when the continuous spectrum is involved, the Marchenko equations are in general not exactly
solvable; in this case, however, it is possible to obtain the behavior of the solution for large f.

As shown in Appendix B, the leading term of the asymptotic expansion of Eq. (3.8) for large ¢ is

F (g, )~ = sine #"(z — 2™ cose cos(v +7/4) - cotvl/(z = 21) sin{v + 7/4) 0.2 (4.1)
’ on vt cos’ + cot’ vi(z - 21) P TS :
FOG 1~ + sine cose sin(v +1/4) + cotvl/(z = 21) cos(v +7/4)
Z iy cos’e +cot? vl/(z - 21) ’
where
v=viz,t) =V - 21)(2t -z +21), (4.2)

We remark that the condition z > 2! is not a restrictive one, since—as already pointed out—we are interested in the

solution at x = {.

Equation (4.1) is in fact valid for finite z; for large z, with Zz/z =1+0o, o being a positive finite quantity, we

have instead

5 n
F(")(Z, 1~ = sine(zi) a1/4-n/2(nz)-1/2

« (1/4a + cose) cosb = o~ 2w(a!’?) cot{ 2w(a' /)] sind
(1/4a +cose)? + (1/a)w*(a7%) cot? [ 2w(at79)]

F(z t)~% sinea™/4(nz)1/?

(1/4a + cose) siné + a1 2w(a'’?) cot[2w(a! /2] cos
(1/2a + cose)? + (1/a)w (a""?) cot 2w(a’2)I]

§=2@-2D)al’? +7/4.

n=0,2,

(4.3)

In both Eqs. {(4.1) and(4. 3), we have the behavior of a power times an oscillating function. On the contrary, the
last case (z =, with 2{/z=1-§, 0<8<1) is characterized by powers of z times exp(- 28'/%), so that, in Egs.
(2.13) and (2.14), the contributions to K(x,y) and L(x,v) arising from this region can be neglected.

According to this last remark, the integration in the Marchenko equations can be restricted to the interval (x, 2¢),
For s~2t, the kernels are given by expression (4. 3), which is of a lower order as compared with (4.1). This en-
ables us to replace, in Eqs. (2.13) and (2,14), the upper integration limit by a function @ (f) such that ¢ < a(f) <2t,

and the F'™(z,t) by (4.1).

We point out that, as shown in Appendix B, the asymptotic estimate (4.1) is already a good onefor t> 25(x ~ )7,
the unit time being the cooperation time 7,, % according to Eq. (2.2), and the unit length being l..

Although we are not able to solve Marchenko equations even in this limit, we can take a sufficiently small ¢, and
try a perturbative solution. We note that the expansion parameter is actually e/!/4, as it can be seen from (4.1) for
n=0, From Eqs. (2,13) and (2. 14) we easily recognize that the lowest order solution is already given by the in-

homogeneous terms. From (2.11) and (2.15), we have
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tang _ 1 +3Lg(x,x) ,
2 2L1(x,x)

whence we obtain

1
_ -1
¢=2tan" srmE g

(4.4)

where F{!(2x,1), the first order approximation of F'’(2x,t), is given by

F{P@x, ) =ev /A, x),
with
= ———1 sin vl cos L
Y 27 2x - 21 2% —

Finally, for the electric field ¢, we get

2 1 dA (v, x) -
¢t—t—1‘+l[2ﬁA(V’x)—‘/; ov ]; l<<e ’

Av,x)

where x has to be taken at the right of 1,

5. CONCLUDING REMARKS

It is well known, from numerical computations® that
for short times Eq. (1.1), with the initial conditions
(3.1) and (3.2), gives rise to a sharp pulse of the out-
going electric field (superfluorescent pulse). The times
involved in our analysis are too large in order to in-
clude the description of such a pulse; what we see is
just the queue of the decay process. Our result states
on analytical grounds that, independently of the value of
the initial tipping angle e (e < 10™') and of the length I of
the sample, one has always a damped oscillatory be-
havior. The scaling factor ¢-3/* appears to be the same
previously found by Burnham and Chiao in a paper on
coherent resonance fluorescence.’ These authors in-
vestigate the response of a system of two-level atoms,
driven by a resonant deltalike light pulse, by studying
Eq. (1.1) under the boundary conditions ¢{x,?=x)=¢
and @,(x =0,¢)=0. This problem, translated in the new
variables z =x and 7=1%-x, takes the form

Pr=sing, @k =0,7)=¢,7=0)=¢, 5.1)

and these boundary conditions suggest that we search
for a similarity solution ¢(z, 7)=Y(q), ¢ =2(72)/2,
Such an ansatz is not consistent with our initial condi-
tions for any value of the parameter /; in fact, the
asymptotic solution (4.5) exhibits dependence both on
(12)!2 and (1/2)'/2. It is not surprising that field (4.8)
is qualitatively analogous to the one obtained in Eq. (19)
of Ref. 7 by a linearization procedure, since for large
t we are dealing essentially with the linearized version
of Eq. (1.1); on the other hand, it is noteworthy to re-
call that Eq. (4. 8) heavily keeps track of the whole
nonlinear evolution of the initial data.

ACKNOWLEDGMENTS

We are indebted to Professor R. Bonifacio, Pro-
fessor L. Lugiato, Professor M. Gronchi, and Pro-
fessor L. Girardello for helpful discussions.

APPENDIX A

The direct scattering problem (2, 3a), with the initial
data (3.1) and (3.2), can be written as
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57 -u-%’), v=v(2x, t). 4.7

(4.8)

]
v, =[RO(I? = x2) — ik0,0(x% - [?)

— (7= el ~ x¥)0,] v, (A1)
where

7 . i .
R= _chl sine - <‘TE cose +z£)03. (A2)

By putting
D = exp <—% (7 =€) 8(x* - 12)02> w, (A3)

Eq. (A1) becomes
w, = [ik8(x* = I*) (0o, sine + 04 cose)
+ROIE = x)w, (A4)

The solutions of Eq. (A4), corresponding to the Jost
solutions ¢(£, x) and (&, x) of (Al), are

wy = [sme/Z

C COSE/Z]EXP(— thx), x<-=1,

(A5)

cose/2 )
Wg —[sine/Z] exp(tkx), x>1.

The general solution of (A4) for |x| <! is given by

sine

3
Wr=«o exp(iwx)

Cco
W+ E+

+8 exp(-iwx), (A6)
sine
4¢
w+E+1/4¢
2wlw + £ +cose/4E)

o=~

X expli(w +k)l]cos% R
 wtE-1/4¢
T 2w(w + £+ cose/4t)

B8

€

X exp|~ i(w ~ k)I] sin 5
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for the ¢ solution, and
B' ==, (A8)

!

a :By
a’ and B’ being the coefficients relative to ¢.
The expressions (3, 3) and (3.4) are now obtained by

recalling that a = ¢,y — @y, b=V ¢d,— ¥, where
the Jost solutions can be taken in (x| <1,

The derivation of Eqs. (3.10) and (3.11) is quite
analogous.

APPENDIX B

We are concerned with the asymptotic behavior of in-
tegrals having the general form

e, )= [~ den(s) explias +p/8)]

= fo'” d£{n() expli(at +8/8)]
+h{- £) expl—i(at +8/8)]}. (B1)

Let us assume o and 8 to have the same sign. By the
substitution £=1{8/a)'/? expu, we have

explzi(a s +B/£)] ~ exp[+ 2ivaB coshul, (B2)

and, according to standard arguments, ® the leading
term of the asymptotic expansion for p-—+ = is obtained
by the replacement coshu —~ 1 +u%/2. This gives

Ia, B)~ (7*8/a®)/ Y h(VB/a) exp(2iVaB +in/4)
+h(- VB/a) exp(- 2iVaB - in/4)]. (B3)

We observed, furthermore, that the kernel (B2) is
the same appearing in a well-known integral represen-
tation of the Bessel function J,(2vag), ? for which numer-
ical computations show that the asymptotic formula is
quite reliable already for o8> 5. This remark, as
well as the fact that our k(%) is a bounded function,
justifies the assertion made in the text that the asymp-
totic1 estimate (4.1) is already a good one for ¢t > 25(x
-
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When a and B have opposite sign, Eq. (B2) must be
modified according to

explzi(at +8/E)]— expl+2iVIaBl sinhu], (B4)

and this kernel is typical of a standard integral repre-
sentation of the modified Bessel function Ky {2V |apl), 9
which is known to decay exponentially for large argu-

ment, thus justifying the assertion made below Eq.

(4. 3).
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Homogeneous and isotropic world models in the Yang-Mills
dynamics of gravity. The structure of the adiabats?®
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The time evolution of homogeneous and isotropic matter distributions is analyzed for the restricted
Yang-Mills curvature dynamics of gravity. This theory of gravity is a tidal dynamics for which
relativistic matter in detailed balancing cannot produce tidal forces. It defines a dynamical system on the
curvature plane spanned by the two components of the Riemann curvature of Robertson-Walker
space-times; the essential features of the cosmological solutions are presented by means of their phase
portraits in the curvature plane. In the asymptotic limit (S—oo ) the phase portrait, which in general
depends on the equation of state and on the change of the entropy per particle, is structurally stable
under the transition from Einstein’s dynamics to the Yang-Mills dynamics for any realistic equation of
state. The phase portraits are explicitly constructed for the equation of state p — np, 0<n<1, and
constant entropy per particle. A criterion for the existence of regular trajectories is given for the full
Yang-Mills dynamics including entropy production. Finally, we discuss the relations between the

observational parameters.

1. INTRODUCTION

The Yang —Mills approach to gravity has mainly been
created for two reasons: first, to incorporate the struc-
tures of a Yang—Mills gauge theory into the description
and dynamics of gravitation—since these constructions
have successfully been applied to cover the interactions
in special relativity —and secondly, to test an alternative
to overcome the difficulties arising in general relativity
from the existence of singularities; the “issue of the
final state for collapsing matter” has not yet been solved
in a physically and mathematically attractive way. The
Yang —Mills dynamics for the Lorentz connection (or the
spin connection) on space—time is, by definition, an
extension of general relativity'; the basic dynamical
variables are the connection coefficients instead of the
metric components, they act as the “gauge potentials of
gravity”; this extension of Einstein’s dynamics offers
indeed a new issue of the final state.

A simple and at the same time illustrative example
for the behavior of (nonradiative) geometries under the
Yang —Mills dynamics is the time evolution of homoge-
neous and isotropic world models; because of the
symmetries of the space—time, the expansion parame-
ter of the timelike matter congruence is the only dy-
namical variable, and, consequently, the coupling be-
tween matter and geometry of the space—time is
governed by a single dynamical equation of second order
for the expansion. The whole theory is based on the
structures of the well-known Yang—Mills gauge theo-
ries: The Lorentz frame bundle on the space—time acts
as gauge bundle, the Lorentz connection as gauge con-
nection, and the curvature components as gauge fields.
Because of the symmetries, the curvature of homoge-
neous and isotropic space—times has only two indepen-
dent components; they span the so-called curvature
plane E,(Q) for these space—times. The Bianchi equa-
tion and the Yang—Mills equation define then a dynami-
cal system on this curvature plane E,. The main
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characteristics of the corresponding phase portrait de-
pend on the equation of state; essentially, we can distin-
guish between three types of phase portraits: the phase
portrait for nonrelativistic matter, v»Z=dp/dp <3, the
phase portrait for relativistic matter, v% =3, and the
phase portrait for superrelativistic matter, § <v% <1.

There is a further element which determines the
phase portrait; the matter of the cosmic fluid is given in
terms of a two-component theory consisting of the
massive component and the massless part (the photon
gas and the neutrino background). As long as there is
no energy transfer between these two constituents of the
cosmic matter, the time evolution is uniquely governed
by the equation of state; the time evolution with energy
transfer (which has to be included for the discussion of
the lepton era, e.g.) is far more complicated and will
not be discussed in the following. Of particular im-
portance is the relationship between Einstein’s trajecto-
ries and the Yang—Mills trajectories in the phase plane;
in some cases, the solutions of Einstein's equations
form trajectories in E, which span a dynamically closed
subset of E,. In this sense, the radiation-dominated
solutions of general relativity (with p = %p for all con-
stituents of the cosmic matter) move along trajectories
which coincide with the free trajectories of the Yang—
Mills dynamics; the Yang—Mills current vanishes exact-
ly if dp/dp =+ and if the entropy per particle remains
constant. Furthermore, dp/dp=0 generates the Fried-
mann trajectory in the phase plane which coincides with
the trajectory spanned by the solutions of the Friedmann
equation. Because of this latter property, the time
evolution of the late epoch of the thermal history of the
universe shows the same functional dependence as
general relativity.

The Yang —Mills dynamics without energy transfer has
solutions of the oscillatory type, the motions represent
oscillations around a suitable equilibrium point in E,.
These oscillating models for p <« p differ only in their
early phase from the singular Friedmann type, while in
the late epoch the Friedmann trajectory acts as an
attractor. This is a general property of the Yang—Mills

© 1978 American Institute of Physics 624



dynamics: In a neighborhood of the critical points of the
free dynamical system, the phase portrait is in some
sense structurally stable under the transition from
Einstein’s dynamics to the Yang—Mills dynamics, and
this for all equations of state. Therefore, observations
based on the present state of the universe can actually
not distinguish between a singular mode of evolution and
a regular periodic mode of evolution with a high relative
amplitude in the radius.

The paper is arranged as follows: Sections 2 and 3
describe the gauge bundle and the gauge dynamics for
the torsionless connection on Robertson—Walker space —
times; in Sec. 4 we discuss the corresponding phase
plane E, and the dynamical system on E,. The meaning
of the critical points and the classification of the free
solutions of this dynamical system are given in Sec. 5.
Sections 6 and 7 concern properties of the phase por-
trait, and finally we discuss the relationship between
the observational parameters.

2. THE GAUGE BUNDLE AND THE GAUGE
CONNECTION ON ROBERTSON-WALKER
SPACE-TIMES

We base our description of homogeneous and isotropic
world models on the Robertson—Walker line element?

ds?=di* -S*(1)do, (2.1)
do® =dx?+ =% d?, (2.2)
¥ is given according to the curvature type of 3-space
siny, h=+1,
Z={ x, k=0, (2.3)
sinhy, k=-1.
This metric (2.1), gry, defines the gauge bundle
pP,(V,,SO(1,3), grw, 7) over the homogeneous and iso-
tropic space—time V,, consisting of all Lorentz frames
defined by gpy. As a particular cross section of PF¥ we

choose the comoving observer system o, o
=1Xpy X1y Xy Xz}

X,=2, X, =57,
(2.4)
X,=(Sz)1a,, X,=(SZsin9)'2,.

The torsionless connection T' on PRV follows from the
first structure equation for the 1-forms 6* dual to (2.4)
(for the notation, see Ref. 3)*%:

@=T,6% connection form (2.5)
f‘g =0 {(comoving condition) (2.6)
T, = 6K,. 2.7
T, =tK,+3I'/(SE)J,, (2.8)
Ty= 6K, + cotd/(ST)J, - '/ (ST, (2.9)

6=2S/S is the expansion parameter of the fluid lines
tangent to X,; because of the spherical symmetry the
expansion is isotropic, shear and rotation vanish.

From the second structure equation for the Lorentz
connection I' we obtain the expressions for the curva-
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ture 2 -form Q

Q=1iR,0°Ne, (2.10)
with the following components

R, =(6+ K, (2.11)

Ry= (8 +k/Se;d,y i,k 1=1,2,3. (2.12)

The timelike components I~20i describe the tidal forces
acting between neighboring fluid lines, and, since

6+ 2=35/s, (2.13)

they are a measure for the curvature of the curve
S=S(1).

The geometry of our space—times V, is therefore
completely determined by the above two curvature com-
ponents, R,, and R,,; for this reason, we introduce the
two curvature functions

x=x(t)= - (& +£/S%), (2.14)
y=p()=6+6=8§/s; 2. 15)

the minus sign in the definition of x has its origin in

the relation between x and y; this will come out later on.
x and y span a plane E,(2), which will be called the
“curvature plane” because of the geometric meaning of
the two functions x and y.

3. THE GAUGE DYNAMICS AND MATTER
CONSERVATION

The Lorentz gauge dynamics for gravity is a general-
ized metric theory of gravity modeled according to the
structure of general gauge theories (applied, e.g., to
the electromagnetic, weak and strong interaction in
special relativity).' The dynamical content of the theory
is involved in the

Bianchi equations

Otu Roo]+[rlu7 Rao]]:(), (3~1)
Lorentz —Yang —Mills equations
(-2, (-9 *R**| +[[,, R**]=kJ?, (3.2)
current conservation

(-)*%2,[(-9)/2J°] +[T,, J*]=0, (3.3)

and in an expression of the components of the so(1,3)-
valued current J” in terms of the matter properties
described by means of the stress—energy —momentum
of matter, T,,,°

Jgpe= ‘(Tab;c‘Tac;b)+(nab T,c—ch,b)- (3.4)

abe
This Lorentz current J° will be decomposed with re-
spect to the chosen basis of so(1, 3) into

Jt==jK, + S, (3.5)
the symmetries of V, and the meaning of ¢ require that

S(l)a:(), VZ,(I (36)

j(l)izjéli’ j:1,2,3’ j(l)O:O. (37)
In terms of the total energy p and the pressure p, the
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current component j is locally given by (3. 4):

J=ip, by O)=5(p —3p)+p + 0(p+p).

(3.8)
The current conservation (3.3), or equivalently J,% ,=0,
which is the basic conservation law in the Yang —Milils
dynamics, determines the divergence of the matter

energy —momentum tensor

fo= Tl (3.9)
in the form!
fa;b _fb;a:Rbfoa—beRfa‘ (3 10)

Since the Ricci tensor R,, and the energy —momentum
tensor T,, are both diagonal on homogeneous and
isotropic space —times, the right-hand side of (3.10)
vanishes, and the f, determine a closed 1-form ¢,

a =f,0" with da=0. The only nonvanishing component f,
describes a “nongeometric” change of the energy of the
massive particles

p+36(p+p)=fo; (3.11)

for this reason, f,=f,({) is at least a measure for the
change in the entropy per particle s, f,=nTs. For
cosmic matter in detailed balancing (this is the case,
e.g., for the collision-dominated matter in the plasma
era, 4x10° K <7 <10° K, and for the lepton era with
8X10° K <T <5x10™" K) this change in the entropy per
particle is negligible. Equation (3.10) does not signal

a breakdown of the principle of equivalence; the arbitra-
riness in f;, on spatially homogeneous space —times,
however, allows us to include such processes as entropy
production by means of pair creation out of a hot photon
gas. [The interpretation of (3.10) on a general space—
time has to be carefully analyzed; over nonhomogeneous
space-—-time, the right-hand side of (3.10) does not, in
general, vanish since gravity itself contributes to f, via
a back reaction generated by gravitational waves. For

a discussion of this point see also Ref. 1.]

By including f, = nTs together with an equation of state
p=pln,s), we may simplify the expression for the
current j

oInT
d lnn

):s‘. (3.12)

vi=n(p+p)t(ap/on)l, describes the sound velocity of
the medium. If $ =0 for all times, the solution of the
Yang—Mills dynamics presents the time evolution of
massive matter with constant entropy per particle.
Relativistic matter, in particular photons and neutrinos
(p =p/3), cannot generate tidal forces for massive
matter.

Jj=—xp+pie(l -3 +%nT<1

The Yang—Mills equations (3.2) give the following
expressions:

p=0, 0=4J°, (3.13)
p=1, —(S5) S2+26(6°+k/S")=-KjVS,  (3.14)
p=2, —(SS)'SZ+26(6°+k/S?) = —kj'P2S, (3.15)
p=3, —(SS) S%+26(6*+1/S%) = - kj'¥3ST sin9.

(3.16)

Because of the relation
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(SS)'S*=6+466+26° (3.17)
and j=jV'S=j®25% = j*¥* ST sinY, there remains one
fundamental equation of second order for the expansion
parameter 0

6+406 - 20652 = xj. (3.18)
The time evolution of homogeneous and isotropic world
models is therefore governed by a single component of
the Lorentz current; (3.18) describes the simplest
time -dependent model within the framework of the
Lorentz dynamics.

The cosmological equation (3. 18) and the Bianchi
equation following from (3.1) define first order deriva-
tives for the curvature function x and v, introduced in
(2.14) and (2. 15):

Bianchi equation

x=-26(x+y), (3.19)
Lorentz —Yang —Mills equation
Y= —26(x +v)+ Kj. (3.20)

Finally, the current conservation (3. 3) is trivially
satisfied as a consequence of (3.6) and (3.7).
4. THE CURVATURE PLANE £, (Q)

The basic equations (3.19) and (3.20) define a dynawmii-
cal system in the “curvature plane”® E,(Q)

dx

67:—29(9(-%3)), (4.1)
ay _ .
= =28ty +7); (4.2)

and, for matter with constant entropy per particle, fis
given by

F=Ap,p)=ixlp+p) 1 -30%). (4.3)

This follows from the current j, defined in (3.12), and
the energy conservation (3.11), v3=dp/dpl,, and 3 =0.

As long as 6+0, we may use, instead of /, S itself as
parameter for the curves (x(S), y(S)), given by their
tangent field

dx 2

—dS = __S (X+}'), (4'4)
ay 2 )

dS:-S(x+y+f), (4.5)

the substitution £=S5,/S, 0 < ¢ <=, gives finally the form
of a nonautonomous dynamical system® § on E,(Q);

dig-:zg‘l(wy), (4.6)
@y .- .
E_Zg Hx+v+1). (4.7)

Here, S, is either maxS, or minS for regularly oscillat-
ing curvature, or S,=maxS for singular but turning big-
bang trajectories in E,(©2). Once the trajectories of the
dynamical system (4.6) and (4.7) are known for a parti-
cular type of function f, the time / may be obtained as
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a function of S:
4 dg,

gle(s/) ‘

The trajectories of the free models, i.e., whenever
=0 (either p=0 or v%3=73), are straight lines y=x+C,
Ce R, in E,4(Q), since

@
dx

[=HS)=HKE)= (4.8)
o

=1, ¥x, whenever =0, (4.9)
and in this case the points on y = — x are obviously criti-
cal points of (4.6), (4.7) (a point P E, is called a
critical point if P(f) =P for all { € R). By the way, the
trajectories of (4.6), (4.7) are only semitrajectories,
since ¢ is positive; the negative semitrajectories would
be generated by a negative S. The original dynamical
system (4.1), (4.2) has a second type of critical points,
the stationary, or equilibrium points defined by 6 =0
for all #; these equilibrium points lie on the axis y=0
and define the space—time geometries of constant
3-curvature, x= -%/8%, y=0. In particular, the
Minkowski space —time, x=0=y, appears as a critical
point of the Yang —Mills dynamics. According to a
general theorem for dynamical systems,® every neigh-
borhood of a critical point contains a semitrajectory,
and the set of all critical points in E, is closed; this
means, that for any point on y = —x, we find trajectories
approaching these points. A topology in E,(f2) may be
defined, e.g., invariantly by means of the curvature
invariant I, =x*+v®, which is invariant under cross
section transformations. In the following, we call Pe E,
a furning point if 6(t,) =0 whenever P = (x(¢,), y(¢,)) and
¥(t,) #0 #5(L,); this means that a curve (x(f), y(?)) in E,
has a turning point for /=1{,, if the tangent vector in this
point vanishes, and therefore

Xty +e)=—x(ty—€), €>0,
) . 4.10)
V(b te)==y(t, —€).

Periodic orbits are, therefore, not given by closed
loops in E,, but by compact segments of corresponding
trajectories.

The phase portrait for the dynamical system (4. 4),
(4.5) essentially depends on the properties of the ex-
ternal structure function f{S). In general we shall dis-
tinguish between two types of positive semi-trajectories
(defined for Se R*):

TABLE 1. The classification of the critical points on y=—x,
Minkowski, de Sitter, and anti-de Sitter space—times are rep-
resented by the points in E, which are critical under the free
Yang—Mills dynamics.

k [ S C
+1 w tanh(wt)

remarks

w cosh(wt) +w? de Sitter

Syexp(wt) >0 steady state
0 + (GCW2i=g
Sy =const =0 Minkowski
- wtan(wt) w cos(wt) —2w? anti-de Sitter
-1
w coth(wi) w*! sinh(w?) +20?
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FIG. 1. The various types of
trajectories for the free tran-
sition models, k=1, repre-
sented in the (x, y)-phase
plane, C>0,

(i) the semitrajectory yv*(S) is called regular tra-
jectory of the dynamical system if 6°(S) <C, C >0, for
all S R*;

(ii) the semi-trajectory ¥*(S) is called singular, if
there does not exist for all Se IR a C> 0 such that
#(S) <C. In particular, a singular semitrajectory is
called a big-bang trajectory if 6°(S) is unbounded at
S,=0.

The usual Friedmann trajectory, y=4x+ const, is a
big-bang trajectory, where the metric also becomes
singular at S,=0, while for a non-big-bang, but singu-
lar trajectory a curvature (or matter) singularity
occurs on a space —time of finite nonvanishing radius
and volume. A corresponding example will be given in
Sec. 7. Not any motion along a singular trajectory has
to be singular itself; this depends on the initial condi-
tions. In the following the phase portrait will be ana-
lyzed for the resivicted Yang —Mills dynamics, where
the current and therefore also the structure function f
do not depend on the external function f,(¢) defined by
(3.9) and (3.10).

5. CRITICAL POINTS AND THE FREE MODELS (/ =0)

The current j vanishes in particular whenever dp/dp
=3, e.g., if p=p(p) =3p. Then the trajectories in E,(Q)
are given by the half straight lines y=x+C, CcR. The
free models do therefore not correspond to the matter-
free space—times, but rather to the states of space—
times where matter follows null curves (the so-called
“radiation-filled” space —times); for this reason, the
tidal action on the timelike congruence defined by the
chosen observer cross section vanishes. The current
J(p, p) is a measure for this tidal action.

The motions of a particular model along the trajec-
tories y = x + C depend on the initial conditions; they are
in general restricted to segments. Of special impor-
tance are the critical points on y = —x; they represent,
by definition, constant motions in E, given by the follow-
ing dynamical equations for 6 and S

§+262+ES?=C, CcR, (5.1)

b+ 6= 6+ /S, (5.2)
or in integrated form

SE=L1cs? . (5.3)

The space —time geometries corresponding to (5.3) are
summarized in the Table I.

The expansion parameter of the general free models
satisfies Eq. (5.1); under the substitution #=$%, we

obtain finally
u-2Cu+2k=0. (5.4)

The general solutions of (5.4) may be written as
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FIG. 2. The types of trajec-
X tories for the free big bang
models, k=11 (C>0),

74

u({t)=k/C+ B,explat) + B,exp(- at), a*=2C>0,
(5.5)

u(t)=-rF+Bt+B, C=0, (5.6)

u(t)=k/C+ Beos{wt +¢), w?=-2C>0. (5.17)

They describe geometries of the transition type for

C >0, “freely falling” models in the null case, C=0,
and geometries of the oscillating type for C <0. The
corresponding motions are shown in the phase space in
Fig. 1-5 for the various combinations of the parame-
ters B, B,, B,, and the constant C. There exist, in
particular, regularly pulsating models for k= -1,
whenever |Bl <2/w?; the models for k.=+1,0 and y + x
>0 are always regular.

The trajectories of the free solutions of the Lorentz
Yang —~Mills dynamics (4.6), (4.7) are identical with the
trajectories spanned by the radiation-dominated solu-
tions of Einstein’s dynamics for cosmological models;
Einstein’s dynamics is namely a subsystem defined by
the constraint equations

Ix=~(kp+A), (5.8)

2y —x=—(kp = A); (5.9)

together with the Bianchi equation (4.1) and the energy
conservation (3. 11), these constraint equations repro-
duce the dynamical equation (4.2). For visualization of
the constraint equations in the phase plane E, we intro-
duce new coordinates in £,

F=x+3h, Y=y-3A (5.10)
to get the form of the constraint equations

35(‘:—[{‘)’ (5.11)

2V —X= —kp. (5.12)

Matter models dominated by an equation of state of the
form p=np, 0 <n<1 and n constant, follow, therefore,
the trajectories

F=38n+1)% (5.13)

or

y=35@n+1)x+B, B=3Hn+1)A; (5.14)

for n=} we regain the straight lines vy =x+ C with

FIG. 3. The types of trajec-
tories for the free transition
and big bang models, k=0
(C>0).
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FIG. 4. The trajectory of the
/, free null solution, C=0,

C=3%A. The Einstein trajectories (5.14) span a cone in
E,, which we call in the following the “Einstein cone, ”
of the form

2¥<§ <3i%, for 0<p<p. (5.15)

The origin of this Einstein cone is located at (- %A,
%A) (see Fig. 6), which is identical with the location of
the critical points of the free Yang—Mills dynamics;
the axis of the cone, v =x+ C for n=3%, coincides with
the trajectory formed by the free Yang—Mills solutions.
The cosmological constant A has, however, a complete-
ly different interpretation in the Yang —Mills dynamics;
it always plays the role of a first integral of the
dynamics.

6. THE PHASE PORTRAIT FOR PRESSURELESS
MATTER ANDs =0

We consider the time evolution of matter models
dominated by an equation of state p =np, 0 <% <1; then
the current’s structure function f, defined in (4.3),

assumes a particularly simple form
f=gxln+ 1)1 - 3n)p, (6.1)

and the dependence of p from S is determined by (3.11)

p=po(Se/S)°,

In this section, we want to discuss the phase portrait
of the dynamical system (4.4,5) for =0 and p, >0; and
afterwards we show that this phase portrait is struc-
turally stable for n <j.

5=3(n+1). 6.2)

In the case n =0, we have to solve the following
dynamical system:

75 =5 e, (©-9
dy 2 b . K .
?z'si: StV -, bI5mSh (6.4)

By adding and substracting Eqgs. (6.3, 4) we get inte-
grated expressions for x and vy in terms of S,

v+x=AS" 580, ACR, (6.5)

y—x=3bS3+B, BeR {6.6)
or

x(S)=3(AS™* —4pS3 —B), (6.7

FIG. 5. The oscillatory types
of trajectories, =0, £1
(C<0).
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FI1G, 6. The “Einstein cones”
in the curvature phase plane,
The Friedmann trajectory y
=3 x+3 /N (p=0) and the ex-
treme relativistic trajectory
y=2x+A(p=p) span the in-
terior of the cone with origin
at y=~x (on the critical line),
The value of the cosmological
constant N gives the position
of the origin of the cone. For
a given /\, any solution of
Einstein’s equations, with a
realistic equation of state,

p =p, describes a trajectory
which lies entirely in the
Einstein cone. The origin of
the cones are identical with
the critical points of the free
Yang—Mills dynamical
system.,

y(S)=3(AS™* - 253+ B). (6.8)

At the same time, an explicit expression is obtained
for the expansion parameter 6 from (6.7)

P=1(-AS™+ 453 - 2k5% + B), (6.9)

which gives, implicitly over the integration in (4.8), the
solution for $=5(;). The same integration determines
also the period of regularly oscillating models which
exist, in general, for A >0, since then there exists a
value of S, S=S;, for which dy/dx=0; from Eq. (6.8)
we obtain S, =2A/b.

For the discussion of the phase portrait we introduce
the translated coordinates

z=y-x~-B, z>0 forb>0, (6.10)

(6.11)

and eliminate S from (6.5); then the trajectories in the
(z, w)-plane are given by

w(z)= az?® -3z, a=A(3/b)"3,

w:y+x,

(6.12)

or in terms of the rescaled coordinates z = z/B and
w=w/B, B0,

(6.13)

Therefore, for a fixed B, B< R, the solution trajec-
tories of (6.3), (6.4) form a one-parameter family of
curves in E,(82), only defined in the regiony —x ~B >0
and parametrized by the value of the constant o, which
may be positive (A >0), zero (4 =0), or negative (4 <0);
the points (- 3B, £B) on the line y = - x remain critical
points of the coupled dynamical system and act as
attractors of all the trajectories defined by (6. 13) for
z >0, though a particular motion along a trajectory
(defined by corresponding initial conditions) may have
a turning point 6 =0 before reaching z=0. In the limit
z— 0, all the trajectories approach the Friedmann
trajectory w= -3z (defined by A =0) (see Fig. 7), which
in terms of x and y is given by

w(z)=az"*® -33.

(6.14)

Again, the Friedmann trajectory coincides with the
trajectory formed by all solutions of Einstein’s equa-

y=3x+3B, Friedmann trajectory.

629 J. Math. Phys., Vol. 19, No. 3, March 1978

tions for » =0, which satisfy the constraint equation
(5.14). Any trajectory in E,(2) forms a closed dynami-
cal subsystém of (4.4,5) in particular, the Friedmann
trajectory (for a =0) represents the solutions of
Einstein’s dynarhical system; however, the other tra-
jectories for A # 0 have no interpretation in terms of
Einstein’s eguations since there is no direct relation
between curvature and matter besides Eq. (3.18). For
a >0, &(Z) has always a zero at Z=32,=(3/a)® with
w'(z,) =1 for all values of «; this condition is equivalent
to x, =0, since for z, we find y, + x, =0. A specific
initial point z =z, and w= w, determines uniquely a
motion along a trajectory (6.13). We discuss in the
following the motions for o > 0; for this reason, we in-
troduce the dimensionless variable £=S,/S, where

S, = S(t,) denotes the initial value for the radius, to-
gether with the condition 6(t,) =0. From this condition,
6*(t=1)=0, we may express the parameters A, b, and
SZ in terms of the initial values Z, and @, = &(z,) (for a
given «); then

#/B=3(1-a,t*+2a,£%-a, %), {6.15)
with the relations -

a,=2k/(BS2)=1+72, - &, (6.16)

ay=b/(BS)) = 37, (6.17)

@, =A/(BSY =&, +3Z,= oz’ ®. (6.18)

The values for the curvature coordinates X=x/B and
y=y/B follow from the transformations

¥=3(@-7-1), @=&(2), (6.19)

v=3(w+z+1). (6.20)

FIG. 7. The curvature phase plane portrait for the equation of
state p << p. The double line corresponds to the z-axis (y=—x),
The critical points lie on the z axis (de Sitter universes, e.g.,)
and on the x axis (stable equilibrium points). The trajectories
are given by w=az%/? —3z, 2>0; for curve 1 we have chosen

@ =2,321x10°¢; for 2, ®=3x10"% for 3, o =0; for 4, @
=-0,5x 3 coincides with the Friedmann trajectory.
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FIG. 8. The behavior of the function 8%2(¢) decides about the
existence of regularly oscillating solutions, #2(£) is determined
by the initial conditions, either given by (z,, @) or (z,, @), For
@ =0, all the solutions are of the big-bang type (82> 0 for

£ —=); for a>0, regular oscillating models exist in the range
1 =¢ =g, (initially contracting, curve 1) and for £{4=¢ =1 (ini-
tially expanding, curve 2). If 62(f) has a double root at £=1,
this corresponds to the equilibrium point in E, (x5, v,=0). For
0=t =¢, we get the motions directed towards the critical points
ony=-—x,

The expressions (6.16)—(6.18) show the following:

For any fixed value of B, BE R, a motion of (6.3) and
(6.4) is uniquely given by the initial point (x,, v,)
€ E,(Q); for any fixed value of B we generate in this way
the phase portrait for an equation of state with n=0. By
changing the value of B we translate the whole phase
portrait in E,(Q) by x—x+a, y —v —a, since the form
of the trajectories determined by Eq. (6.12) is inde-
pendent of B, while the meaning of a particular solution
depends on the value of B [see Eq. (6. 9)]. In this sense,
even the coupled dynamical system (6.3), (6.4) is
translation-invariant under x - x+a, y -y -a, ac R.

The behavior of the function ¢(¢) decides about the
possible motions along the trajectories w= w(z; a) (see
Fig. 8). For w,=-Z,~-1[i.e., in the points (x,, 0) € E,]
we find the equilibrium points of the Yang—Mills dy-
namical system; the trajectories @= &(z, &) crosses,
for B >0, the x axis twice, namely for 2 =%, and Z2=72%,;
thereby, Z,=max(z,, Z,) and Z,=min(Z,, Z,). The dis-
cussion of f*(¢) implies the following classification of
possible motions (B >0) in terms of given initial
conditions:

@ >0:

(i) If Z,=3Z,, then ¥,=X,, ¥,=0: stable equilibrium
point;

(ii) if 2, <Z, <Z, then ;>0 and £, <& <1 (6°(£,)=0):
initially expanding periodic model;

(iii) if 2, <Z, <Z,, then 5, <0 and 1< £ < £, (6%(g,) = 0)s
initially contracting periodic model;

(iv) if Z,=Z,, then y,= 0: unstable equilibrium point;
(v) \0<%z, <%,
if » then K}.O>0’ Esgu 92(&;):0:
2,>7Z

SC

model running into the critical point y = —x.
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048
1018

10"

01 0.5 § 1

FIG. 9. Plots of §%(£) for initially expanding models (>0, the
expansion sets in for £ =1}, The maximum of the expansion de-
pends on the chosen initial conditions. 1: & =3 X107, z;

=2,370 x10%; 2: G=3x10"%, Z,=2.0x10'%; 3: & =3 x107¢, Z,
=1x10%; 4: & =2 %1076, Z, =6 x108,

For all trajectories (& >0, B > 0) there exists a
Z=12,, @(z,) >0, such that for Z,>Z  the motion is no
longer periodic, but forever expanding into the critical
point on y = —x. For the initial conditions specified
under (ii) and (iii) we get periodic motions, i.e., the
radius of closed models (k= +1) oscillates between a
maximal, S_.., and a minimal value, S .. The relative
amplitude of oscillation, S, ,./S.;,, depends on the ini-
tial value (z,, &,) as well as on the value of @: the
smaller @, the greater the relative amplitude), for
Zo—2.=¢€, € >0, the amplitude reaches its maximum.

In the case B=<0 and a >0, all the motions are periodic
motions, since there exist no initial conditions for mo-
tions running into the critical points on y = —x. While
for B = 0 the underlying space —times of the periodic
modes of evolution are always of positive curvature

(. =+1), the curvature type for B <0 depends now ob-
viously on the initial data (k =+ 1, if x, <0; k=0, if
%,=0, and k= -1, if x,>0). The motions for o =0

(A =0) are identical with the motions given by Einstein’s
solutions; finally, we are not interested here in the
trajectories for o <0 (4 <0}, since they describe the
time evolution of singular big-bang models analogous

to the Einstein models with radiation.

Figure 9 shows how the maximum of & depends on the
initial conditions (here we have chosen an initially ex-
panding model); the expansion always reaches its maxi-
mum soon after the “initial explosion.” In Fig. 10 we
compare this behavior with that of initially contracting

@B

210" L

FIG. 10, Plots of ¢2(¢) for initially contracting models of small
relative amplitudes (@>0), @ =3 x10-% 1: 2p=5 x10%; 2: Z;
=2 %101, 3: Zy=1 x1018; 4;: Zy=5x1015,
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models; for z, ~Z,=¢, € >0 and a suitable o, we can
generate periodic motions of arbitrarily high relative
amplitudes. This indicates at the same time that the
equilibrium points Z, =2, at x,= - (1 + Z,) are stable,
since for 1z, -z, <¢, € >0, the corresponding motions
are periodic around (x,, 0). The relative amplitude,
Spax’Smins 18 given by the third zero of 6, £,, and 6°(%,)
=0. The value of a together with the initial value 2=z,
determine uniquely the coefficients a,, a,, o, of &(%);
from this, £, is determined numerically.

The existence of regular periodic motions in the
Yang —Mills framework marks the difference to
Einstein’s dynamics, where initial conditions for re-
contracting models always give rise to singular mo-
tions. Let us relate the geometric initial condition
Z =12, to physical conditions in the case of inifially con-
tracting motions. From Eq. (6.17) we obtain together
with b=$xp,S3 an expression for B

B = kpy(6z,)7", (6.21)
and from (6.16) for 2=+ 1 an expression for S,

S5 = kpo(l + 7, - @,)(12Z,)2, (6.22)
or

Wy = Wo(Zo, KPyS3),

(6.23)

@o=1+(1 - (& kp, S2)™) 2.
On the other hand, &, is determined by « and Z,

o= aZp/? - 32,; (6.24)

Equations (6.23) and (6.24) determine therefore z,
=Zo(@, kp,Sp)

_ 1~ 024/3
2= T 6.25
*= S 4 629
Since we are interested in the motions of “deeply fall-
ing” models, i.e., £, >10%, @24/ %<« 1; this term will
be neglected in (6.25). In this case, the initial matter
density p, and the initial radius S, have to satisfy the

condition
(6.26)

On the other hand, y, <0, and therefore 7, >Z.. Since
a << 1, the motion follows initially the Friedmann tra-

1 2 _1
15K0 Sp <73

o4B

5407

110"

1 1 A
510° 1106 15.08 ¢
FIG. 11. Plots of 6*{t) for initially contracting models of high
relative amplitude, @=3x10"%, generated by initial values z,
~1. For a given @« 1, the relative amplitude Spa/Spin=E,
depends on z; (i.e., on «pgS%,/2), while the maximum of the
expansion remains constant for z,=1. 1:2,=10 ({,=6.18

x10%; 2:2p=1 (£,=1.33%10%; 3:2,=0.55 (£=1.62x109.
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FIG. 12, The phase portrait
for the superrelativistic equa-
tion of state p=np, n>3%. The
double line is the z axis, the |
dotted line the w axis, 1:
Einstein trajectory y =3 x+4B,
defined for 2<0; 2: @ >0;

3: @ <0, In a realistic case
we should have, however,

n— 0 for y— — x, The equation
of state separates the (z, w)-
plane into two half-planes,
z>0 for n<3, z=0for n=3%,
and z<0 for n>3,

jectory @= -3%Z, or y=3% +1; J, <0 is therefore equiv-
alent to X, <—3, or Z, >}. In summarizing, we have
found the following:

The matter density p, and the radius S, at the maxi-
mum state of regular peviodic motions with high rela-
tive amplitude (S,,,,/Snia > 10°) satisfy the constraint
equation

1 <3kp, St <3. (6.27)
The behavior of these periodic motions is illustrated

in Fig. 11 for various values of 3kp,S2 and a fixed a;

a rescaling of « only changes the relative amplitude

Smox/Smin A1d the maximum of the expansion.

7. THE PHASE PORTRAIT FOR THE EQUATION OF

STATEp=np,0<n<1,ands=0

For the equation of state p =#p the Yang~Mills sys-
tem has the form

2

ds_——s—(x+y), (7.1)

dy _ E -6 -1

S =gty =psT, (7.2)

b=3xn+ 1)1 ~3n)p,SS, 5=3(1+n). (7.3)
The corresponding trajectories are then given in
parametrized form

2(8)=b56"1S", z=v-x-B, BCR, (7.4)

W(S)=AS™ -b(4 -6)'S?, AcR, §+#4, (7.5)
or in closed form

w=w(z) =A5*°(2/b)*/* - 6(4 ~5)* 2. (7.6)
Thereby the domain of definition depends on 7:

(i) 2>0, b>0 if O0<p<3; (7.7)

(ii) 2 <0, b<0 if + <n<1. (7.8)
For A=0, we again obtain the Einstein trajectory

y=3(6 -~2)x+ $6B. (7.9)

For 0 <u <3, the phase portrait given by (7.6) is struc-
turally equivalent with the phase portrait for n=0, with
the exception that for z — 0 (S — =) the generalized
Einstein trajectory (7.9) acts as attractor. In this
sense, the phase portrait is structurally stable in the
domain 0 <n <3,
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Under the transition from a nonrelativistic to the
superrelativistic equation of state (1 >3), the phase
portrait changes its features in the neighborhood of the
end points at y = ~ x (see Fig. 12), while for high values
of z the trajectories are now attracted by the Einstein
trajectories (7.9). The application of the equation of
state p =np, n >7%, in the asymptotic domain § — = is,
however, physically not quite reasonable; for this do-
main we would expect p < p, which means that the
Friedman picture is correct in the asymptotic limit
§— « for all physically reasonable equations of state.

The detailed structure of the phase portrait may vary
with the chosen equation of state; as an example, we
consider p =p(p)=ap™, m >0 (p <10 gem™). In this
case the energy density is found to be

p(s): p1£3(1 __aprln-l ES(m—l))-l/ (m—l), gzso/s'

The phase portrait is essentially dictated by the struc-
ture function f, defined in (4.3) for § =0,

(7.10)

e =45et®p,[1 -Bm + Dapr-tg3m-1)

><[1 _ap'rln-l 53(m-1)]-(2m»1)/(m'1) . (7.11)
In the asymptotic limit S «, it has the same form as
(6.1). Without a cutoff at p~10' gcm™, f becomes
singular at £ ,:

fm: (apyln-l -1/3(m-1)y __ (3711 + 1)1/3(m-1)£2’ (7. 12)

with the introduction of f(£,) = 0. Therefore, we have
for m #1 always a S=8, with 0 <S_ <S,; for m=2%, S_
=S,/5, and for m=%, S_=S,/6/%. Already in
Einstein’s theory, this equation of state, p=ap™, would
generate for the early epoch in the time evolution a
matter, or curvature, singularity at a finite radius
§=5_, >0, the metric being completely regular under
this equation of state in contrast to the usual Friedmann
singularity. The behavior of the curvature follows

immediately from (5.11) and (5. 12):
Xp(8) = —3xp(E) <0, (1.13)

3(m-1))-m/ (m-1)

(NI

Fe(8)=3X5(8) - s kapl (1 —ap?™&

(7.14)
We calculate the Yang—~Mills trajectories given by the
structure functions (7.11) only in the first
approximation

AE)=51kE1 < [m/(m = 1)](3m - Dapy™ £ Dlp .

(7.15)
For not too high densities this is a good approximation
to (7.11). For m=4/3, this first correction vanishes,
while for m >4/3 it always gives a negative contribution
to the lowest order (6.1). The phase portrait generated

by (7.15) with m =% is shown in Fig. 13; the trajec-
tories are parametrized by

(7.186)
(7.17)

Z(g): §a3 53 "gds £5’ [e73 >0’

wlt)=-20, 2+ o, t* - 20, 5%

they are considered as a superposition of (6.5), (6. 6) and
(7.4), (7.5); the coefficient a, is determined by xap}’>.
If @,>0, regularly oscillating motions exist, their
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FIG. 13. An example of a phase portrait for an equation of
state which is stiffer at high densities. f=a;8™3 - a;8%, a;3> 0,
a;>0, i.e., n—0 for §—~w and n— 2 for §—~ 0. The dotted
straight lines are the z and w axes. The trajectories are
given in parametrized form by z(¢)=5a3t% ~8a £5, G(¢)

= 20488+ o 8%~ 2058, 04> 0. The behavior of the trajectories
depends critically on the Contribution from the eguation of
state at the various epochs; this can be characterized by means
of the parameter D=0~ 160505, 1: D<0 (@ <0); 2: D=0
(@&=0);3: D>0; 4: Einstein trajectory y=§ x+} B (B>0, o,
=0=0y),; 5: D>0, «; sufficiently small. The motions along
13 are of the big-bang type, while a motion along the upper
segment of 5 describes the time evolution of a regularly oscil-
lating closed space—time model (¢ =+1), For all the trajec-
tories we have oy << @ < ag=1, o,=3x10%, and ;=103
e.g.

periods and relative amplitudes being determined by
the coefficients o, and «..

This investigation of the phase portrait over the range
0 <n <1 for the equation of state p(p)=np shows that
reliable equations of state cannot guarantee the exis-
tence of regular motions within the Yang —Mills dynam-
ics characterized by a vanishing exterior form « de-
fined in (3.9) and (3.10). This additional freedom may
be used to generate a structure function £(S) having a
positive influence on the evolution along regular tra-
jectories; with the interpretation of @ and the existence
of “regular big-bang cosmologies” we shall be con-
cerned in a forthcoming paper. That under well posed
conditions regular trajectories exist in the Yang —Mills
dynamics will be shown in the next section.

8. ON THE EXISTENCE OF REGULAR TRAJECTORIES
IN THE YANG-MILLS DYNAMICS

For any realistic equation of state the structure func-
tion f(S) has the asymptotic limit f ~;xp, £*. This means:

Lemma 1: In a neighborhood of the critical points on
v = — x the phase portrait of the dynamical system
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(4.1)—(4.3) is structurally stable under the transition
from Einstein’s dynamics to the Yang—Mills dynamics,
i.e., the Friedmann trajectory always acts as an
attractor in the asymptotic limit,

For the limit $— 0, the phase portrait depends on the
equation of state in the case a=0:

(i) for dust matter, this limit depends on the sign of
A defined in (6.5);

(ii) for p=np, n <%, this limit is qualitatively the
same as in (i);

(iii) for p =np, n >3, the Yang —Mills trajectories
are attracted by the corresponding Einstein trajecto-
ries; they all are confined to the Einstein cone in the
limit S—0.

In the following we want to give a type of a structure
function £(S) for generation of regular trajectories in
E,(8):

Lemma 2: If the structure function f(S) satisfies
f=~a,S"for 50, i.e., for p—, with m >4, then

(i) no singular big-bang trajectory exists for a, >0;
any trajectory is attracted by w(z)=[m/(m ~4}]z, z>0;

{ii) any trajectory is of the singular big-bang type for
a,, <0; they are attracted by w(z)=[m/(m -4)}z, z <0.

Thereby the coordinates z and w are defined in Sec.
6. This statement gives a criterion for the existence of
singular and regular trajectories in the Yang—Mills
dynamics. It is beyond of the aim of this paper to
generate this type of structure function by introducing
a nonvanishing 1-form «; however, note that g, <0 for
a=0and p=mnp, n>3.

The attractors are calculated by solving the dynami-
cal system

%Z—%(aﬂry). (8.1
%:-—%(x+y+a3$'3+am8"“), m >4. (8.2)
In parametrized form they are given by
2(S)=%a,5°+(2/m)a, S™, (8.3)
w(S)=-2q,5%+ A5+ [2/(m -D]a,S™, (8.4)

with the following domain of definitions:
(i} 2>0 and w>0, ifa,>0,
(ii) z<0 and w<0, ifq, <O0.
The corresponding expansion function,
26°(8)=B -2kS?+ £a,5% -AS™* - [8/m(m - 4)]a,S™,
(8.5)

proves to give regular motions for g, >0 (no matter or
curvature singularity can occur) while for a, <0 (8.5)
characterizes singular big-bang trajectories. The in-
fluence of the term AS™ is no longer important for

m >4,
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9. THE PRESENT STATE OF THE UNIVERSE AND
THE RELATIONSHIP BETWEEN THE
OBSERVATIONAL PARAMETERS

Any point in the phase piane E,(Q2} determines for a
fixed value of S=S5, a dynamical state of a world model
at some particular instant of time, (=/, with 8(¢,)=S,.
The Hubble constant H,, which is equal to the present
value of the expansion 6,, the deceleration parameter
des 4:=—v,/8, and the matter parameter 0,, 0,=3kp,/
& are the observational parameters of every dynamical
system based on the Robertson—Walker space-—time
geometry. In general relativity, two relations are given
between the state (x,, v,) and the energy content of the
universe; see, e.g., Egs. {(5.8) and (5.9); the integra-
tion of the Yang—Mills dynamics also provides two
corresponding relations, in general given by (for the
late epoch)

v, -x,=B+3bS+F(S,), BCcR, (9.1)

y,+x,=AS;* —bS;* - G(S,), AcR. (9.2)
Here, b=3kp, S describes the contribution from the
structure function f generated by the asymptotic form
(S— =) of the equation of state, p — 0 for p—~0; the two
functions F(S) and G(S) are responsible for the contri-
butions from the form of the equation of state at high
densities (in the lepton era). Their influence on (9.1)
and {9.2), however, vanishes sufficiently rapidly in the
asymptotic limit.

The A term, as well as the F- and G-terms deter-
mine how much the motion of the present universe de-
viates from the Friedmann trajectory

v, -5x,~3B=4AS;*+3F, - G,). (9.3)
By solving (8.1) and (9.2) for x and y
%, = 5(AS - $bS;° - F(S,) - G(S,) - B), (9.4)
y.=5AS? ~ 267+ F(S,) - G(S,) + B), (9.5)
we obtain the two observational relations
k/SER =20,-1~A/(26:S%) + B/26
+F,/26+G,/26, (9.6)
q,=0,~A/(263S}) —B/26 - F /262 + G,/26..  (9.7)

In the case A=0=F= G~, they coincide with the
general relativistic relations (if we identify B=2A); for
t=1{,, the residual contributions from the early universe
are negligible, i.e., 1F,)/H2< 1 and |G,|/H>< 1, while
the A term, which defines the initial state of the model,
might have a nonnegligible influence on g, and %/SiHZ.

If, furthermore, the present state of the universe is
long away from the turning point 6(S,,,)=0, |B!/H}
<« 1. The present data ¢,~1 and 0, > 0. 02 would require
a negative A term, A <0, in order to account for the
relation (9. 7) with
-A2H:SE =g, -0, if |BI/H:«<1, (9.8)
Despite the small value of o,, the geometry might be
closed, since from (9.8) we find in general, by elimi-
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nating the A term,

k/S:HE=q,+ 0, -1+ B/H?; 9.9)
the geometry remains closed for
qo>1~a,-B/HS. (9.10)

In the same way we obtain an upper limit for ¢, deter-
mined by A/S; HZ, as a consequence, the geometry is
closed if and only if
1-0,-B/H: <q,<30,-1-A/S3HZ. (9.11)

In Einstein’s theory, A is determined by the present
radiation-energy content of the universe, A/S5= - %Kpf
=-10"" ¢cm™, and B by the cosmological constant A,
B=3A. In the “Yang—Milis” cosmology, B is an ex-
pression for the total energy integral and A follows
from the physics of the early universe whenever the
energy transfer between the massive constituents of the
cosmic fluid and the photon gas is no longer negligible.
The functional dependence of the late epoch is therefore
exactly the same as in Einstein’s theory, while the
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physical interpretation of the corresponding terms is
essentially different.
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A method of obtaining integral representations of particular integrals of a class of inhomogeneous second-
order linear ordinary differential equations is presented. The integrands of the representations are
exp[F(z;1)], where F(z;t) = z%a(t)+zb(¢)+c(t), z is the independent variable of the differential
equation, and a, b, and c are initially unspecified functions of the variable of integration, ¢. The lower
limit of the contours of integration is zero. The upper limits of integration and the contours along which
the integral is taken are initially unspecified. In the general class of inhomogeneous differential equations
considered, the coefficients of the dependent variable and its derivatives are polynomials in z with
complex constants and the homogeneous term is exp(k,z >+ k,z + ko), where the k, are complex
constants. One imposes the conditions that the application of the homogeneous operator to the assumed
form of integral representation give the integral of —0dF/at, that exp[F(z;0)] be equal to the
inhomogeneous term of the differential equation, and that the limit of expF as t approaches the upper
limit along the contour of integration be zero. By equating coefficients of different powers of z separately
to zero, one obtains a set of coupled equations for a, b, and c¢. The basic class of inhomogeneous
differential equations to which the method is applicable is determined by requiring that a, &, and ¢ be
algebraic or elementary transcendental functions of ¢. The class of equations to which the method is
applicable is extended to include inhomogeneous terms of the form z"exp(k,z >+ k,z + ko), where n is a
positive integer, by repeated differentiation of integral representations of members of the basic class with

respect to k,, treated as a parameter. More general inhomogeneous terms may be treated by
superposition and, in appropriate cases, by approximation in terms of sets of orthogonal functions.

1. INTRODUCTION

The theory of integral representations of solutions of
homogeneous linear ordinary differential equations is
well established. Such integral representations are a
significant element of the theory of ordinary differential
equations and are extremely important in mathematical
physics. ! In the case of inhomogeneous equations, in-
tegral representations do not appear to have received
substantial attention. This is somewhat surprising,
considering the importance of inhomogeneous equations
in mathematical physics. Integral representations of
particular integrals of inhomogeneous equations whose
integrands contain only algebraic or elementary tran-
scendental functions of the variable of integration may
have substantial advantages over solutions obtained by
the usual methods of variation of parameters or Green’s
functions. The latter solutions contain products of solu-
tions of the corresponding homogeneous equation and
integrals whose integrands contain solutions of the
homogeneous equation as a factor. If the solutions of
the homogeneous equation are higher transcendental
functions, the relative advantage of integral representa-
tions of the sort described may be considerable. Fur-
thermore, integral representations may be particularly
convenient for approximate analytic or numerical evalua-
tion.

) This work was supported in part by the U,S.E.R.D, A. under
the auspices of the Division of Magnetic Fusion Energy under
contract W-7405-ENG-48, and by the N.S.F. under contract
ENG 75-06242,

® Present address: California Energy Resources Conservation
and Development Commission, Sacramento, California
95825,

In this paper a method of obtaining integral repre-
sentations of particular integrals of a class of inhomo-
geneous second-order linear ordinary differential equa-
tions is presented. In Sec. 2 the motivation for the
method is presented. It is based upon a consideration
of two particular inhomogeneous equations. The in-
homogeneous term of both equations is a constant. The
corresponding homogeneous equation is, in one case,
Airy’s equation and, in the other case, the parabolic
cylinder equation. These equations appear in the warm
fluid theory of linear mode conversion of a time-har-
monic uniform external electrostatic field in the direc-
tion of linear? and parabolic plasma density profiles,
respectively.

In the case of the inhomogeneous Airy’s equation,
there exists an integral representation of a particular
integral. ® In the case of the inhomogeneous parabolic
cylinder equation, an integral representation apparently
has not been published.? An integral representation
is easily obtained by transformations of the dependent
and independent variables and the method of Fourier
transforms. The derivation of this result is presented
in the Appendix.

An examination of the manner in which the two inte-
gral representations satisfy the corresponding equa-
tions suggests a method for obtaining integral repre-
sentations of a broader class of differential equations.
The elements of the method are presented in Sec. 3.
The basic class of equations to which the method may
be applied consists of two subclasses, depending upon
the set of restrictions imposed upon the form of solu-
tion assumed. Subclass 1, which is treated in Sec. 4,
consists of equations of the form
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1z + oy + (g2 + &)y + (hyz + h)y(2)
=exp(k,z +k,) (1)

and related equations obtained by setting various of the
constant coefficients f,, g,, k,, and k, equal to zero.
Subclass 2, which is treated in Sec. 5, consists of
equations of the form

Jox" +Goy + (2% + hyz + h ()= exp(k,2® + k2 + k) (2)

and related equations obtained by setting various of the
constant coefficients equal to zero.

The class of equations to which the method can be
applied can be extended by differentiating integral re-
presentations of the bhasic class with respect to k,,
treated as a parameter, and by superposition. Under
some conditions it is possible to treat, in an approxi-
mate manner, equations with more general inhomo-
geneous terms. In the case of Subclass 1, it may be
possible to approximate an inhomogeneous term on the
range 0 < z <« by a reasonable number of terms of an
expansion in weighted Laguerre polynomials. In the
case of Subclass 2, it may be possible to approximate
an inhomogeneous term on the range — v <z<w py a
reasonable number of terms of an expansion in weighted
Hermite polynomials.

In Sec. 6, various aspects of the method are dis-
cussed. In particular, the relation of the method to the
theory of integral representations of solutions of homo-
geneous equations is examined, The extension of the
latter theory to inhomogeneous equations apparently has
never been undertaken. It yields integral representations
of a narrower class of inhomogeneous equations than
the method presented here—it cannot be applied to some
equations of Subclass 2,

2. TWO EQUATIONS OF INTEREST

The two inhomogeneous equations which motivate the
method presented in this paper are

”

= zp(z)y =771 3
and
VO (22— av(2)=1. (4)

Equation (3) appears in the warm fluid theory of linear
mode conversion of a time-harmonic uniform external
electrostatic field in the direction of a linear plasma
density profile.? The dependent variable is the complex
amplitude of the self-consistent electric field in the
plasma. If the plasma density profile is parabolic in-
stead of linear, the corresponding equation is (4).

A particular integral of (3) is given by the integral
representation?®

Hi(z) :%fwexp(zf —3/3)dL. (5)

A set of linearly independent solutions of the corre-
sponding homogeneous equation, denoted by Ai(z) and
Bi(z), are expressible as integral representations in
which, except for a constant multiplier, the integrand
is the same as that of (5) but the contours of integra-
tion are different from that of (5). The integral repre-
sentation Hi(z) can be obtained by applying the method
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of Fourier transforms. The integral representations
Ai(z) and Bi(z) can be obtained by applying the theory
of integral representations of solutions of homo-
geneous linear ordinary differential equations, using
the Laplace kernel K(z, {)=exp(zt).*

Integral representations of solutions of the homo-
geneous equation corresponding to (4) have been ob-
tained in various forms by the theory of integral repre-
sentations. For example, the asymptotic behavior
¥(2)~ exp(3iz®) can be removed by assuming a solution
of the form

y(2) =exp(iz?/2)® (), (6)

where w=—iz%. The transformed equation for &(w) is
the canonical form of the confluent hypergeometric
equation with parameters a= {(1 +iw) and c =3, Inte-
gral representations of solutions of the confluent hyper-
geometric equation can be obtained by using the Laplace
kernel K(i, ) = exp(wt). Integral representations of
particular integrals of (4) apparently have not been
published. * Comparison of the Eq. (3) and (4) and the
integral representations of the corresponding homo-
geneous equations suggests that it should be possible to
obtain integral representations of particular integrals
of (4).

Integral representations can in fact be obtained by
straightforward application of the method of Fourier
transforms to the differential equation for ¥ ()= & (w),
where ¢ ={iuw =2z?, Introducing a convenient transforma-
tion of the variable of integration and subtracting a
solution of the homogeneous equation, one obtains the
integral representations

v(2)= | o expl- $z%tanc + sao
+

+ log[z(coso)1/*]}do, &)

where the contours of integration C, and C_ apply to the
cases Im(a)> -1 and Im(a) < 1, respectively. Note
that both contours of integration are available in the
range — 1<Im(a)< 1. The contours C, and C._ proceed
from the origin to r £iw, respectively, where v isa
finite real number. The procedure described above for
obtaining the integral representation (7) is presented
in the Appendix.

Examination of the manner in which the integral re-
presentations (5) and (7) satisfy the Eq. (3) and (4),
respectively, suggests a method for obtaining integral
representations of a broader class of differential equa-~
tions.

3. ELEMENTS OF THE METHOD

Operation of the linear differential operators of (3)
and (4) on the integral representations (5) and (7), re-
spectively, produces an integral of a derivative of a
function of the variable of integration. At the upper
limit of integration the function vanishes. At the lower
limit it reproduces the inhomogeneous term. If a par-
ticular inhomogeneous equation is represented as

Ly(z)=R(2), (8)

integral representations of particular integrals are of
the form
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y(z):fc expF (z;t)dt. (9)
The function F satisfies the conditions

L(epr)+5az expF =0 (10)
and

expF(z;0)=R(z). (11)

The contour of integration, C, proceeds from the ori-
gin to an upper limit ¢t =« along a path such that the
limit of expF as f approaches u on the contour is zero.

Generalizing the form of F in a manner such that the
forms of its dependence on z in (5) and (7) are com-
prehended, we have

F(z;t)= 22a(t) + 2b(t) + c (), “2

where a, b, and ¢ are initially unspecified functions of
f. Subject to additional limitations that may appear in
the further development of the method, the form of F
given in (12) permits the treatment of inhomogeneous
equations in which the inhomogeneous term has the form

R(z)=exp(k,2? + kyz + ko), (13)

where k,, k;, and k, are (possibly complex) constants.
The consistency of (12) and (13) imposes the conditions
a(0)=k,, b(0)="F,, and e(0)=k,.

The basic class of differential equations for which
we shall endeavor to obtain integral representation of
the form which we have described is

(fo2? +fiz + " + (€22 + g2+ 8,0y (14)
+ (2% + iz + Iy )y(2) = explk,2®? + Rz + k),

where the quantities f,, g,, and &,, #=0,1,2, are
(possibly complex) constants, some of which may van-
ish. Since the functions 2", #=0,1,2,..., are linearly
independent, the imposition of condition (10), where L
is given by (14), yields a set of coupled equations for

a, b, c, and their first derivatives., The process of
obtaining an integral representation of the assumed
form consists of the determination of a set of algebraic
or elementary transcendental functions which satisfies
this set of equations subject to the conditions a(0)=k,,
b(0)="Fk,, c(0)=Fk, and a contour of integration C which
satisfies the conditions states above. We shall find that
the class of Eq. (14) is broader than the class of equa-
tions for which integral representations of the assumed
form can be obtained. The exploration of the limitations
on the class of equations for which integral representa-
tions can be found is facilitated by initial inclusion of
inadmissible terms and an examination of the considera-
tions which necessitate their exclusion.

Proceeding in the manner which we described above,
we obtain the following set of five coupled equations for
a, b, c, and their first derivatives:

4f,a* =0, (15)

4f,ab + 4f,a® + 2g,a =0, (16)
So(b® + 2a) + 4f,ab + 4f a® + g,b+ 2g,a + hy = - ', (17)
f1(b% + 2a) + 4fjab + g,b + 2g,a+ hy = - b, (18)
folb2+2a)+gb+h,=-¢". (19)
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If f,#0, it is possible to obtain an integral represen-
tation of the assumed form only for members of the
class of Eq. {(14) in which certain of the constant coef-
ficients are so interrelated that the corresponding equa-
tions form a subclass of (14) which is negligible inter-
est. If f,#0, (15) imposes the condition that a=0. The
condition a(0) =k, cannot be satisfied unless k,=0.
Relation (16) is then identically satisfied. Relations (17
and (18) are a pair of quadratic equations for b. The
condition #{0) =%k, must also be satisfied. These three
relations can be satisfied simultaneously only if f,/f,
=g,/g,=h,/h, and if [,k + g,k + 1, =0.

Accordingly, we shall henceforth assume that f, =0.
With this assumption, (15) is identically satisfied. There
are then three exclusive alternative sets of assump-
tions that result in the satisfaction of (16): a=-g,/2f},

g, %0, f,#0; a=0; and f, =g, =0,

The first set of assumptions is that « = - g,/2/],
f,#0, and g, #0. It is possible to obtain an integral
representation of the assumed form only for a subclass
of {14) which is so restricted as to be of negligible
interest. Condition a(0)=F, can be satisfied only if
k,=-g,/2f,. Relation (17) determines a constant value
of b that is consistent with relations (18) and 5(0)=F,
only in extremely limited circumstances. Accordingly
we exclude henceforth the set of assumptions ¢ =~ g,/
2f, f1#0, and g,+#0.

The second set of assumptions for satisfying (16) is
that a=0. This assumption yields Subclass 1, which is
treated in the next section. As we shall see there, it
is characterized by the restrictions f,=g,=h, =k, =0.
Additional coefficients may, of course, vanish.

The third set of assumptions is that «¢ is not identical-
ly equal to zero but that f, =g,=0. This leads to Sub-
class 2, which is treated in Sec. 5. It is characterized
by the restrictions f,=f, =g,=¢; =0. Additional coef-
ficients may, of course, vanish.

The class of equations to which the method is ap-
plicable can be extended beyond the basic class of
equations composed of Subclasses 1 and 2. This is
accomplished in the following manner. First, sup-
pose that »(z} is an integral representation of a parti-
cular integral of an inhomogeneous equation which is a
member of the basic class. The constant %, is replaced
by the parameter A. The rth derivative of v(2) with re-
spect to A, evaluated at A =%,, is an integral represen-
tation of a particular integral of an inhomogeneous
equation which differs from the original equation in that
the inhomogeneous term is 2" times that of the inhomo-
geneous term in the original equation, Second, integral
representations of particular integrals of equations in
which the inhomogeneous term consists of a sum of
such terms can be obtained by superposition.

Under some conditions it is possible to treat, in an
approximate manner, equations with more general in-
homogeneous terms. This is accomplished by expres~
sing the inhomogeneous term as an expansion in an ap-
propriate set of orthogonal polynomials.

4. SUBCLASS 1
If (16) is satisfied by choosing a=0, the restriction
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k,=0 is imposed. If (17) is satisfied by choosing
b=-h,/g, and imposing the restriction g,+0, the
simultaneous additional satisfaction of {18} and the
relation b(0)=k, imposes restrictions on the coef-
ficients which deprive the resulting subclass of equa-
tions of substantial interest.

Accordingly, we choose the imposition of the restrice-

tions g, =%, =0 as the means of satisfying (17). The

two remaining equations of the set, (18) and (19), de-
termine functions 5(¢) and c(¢) which are algebraic or
elementary transcendental functions of f. Contours of
integration which satisfy the requirements of the me-
thod can be obtained, Thus Subclass 1 consists of the
equations

(fiz +fol" +(g12 + )" + (1,2 + hy)y(2)
=exp(k,z + k), (20)
in which additional coefficients may vanish.

The determination of the complete set of possible
contours of integration for integral representations is
simplified considerably by choosing b instead of { as
the variable of integration. We thereby obtain repre-
sentations in the form

V(@)= - [, explbz +c(b) +j(b)db, (21)
where
c(b)= Jo8" 1868 T ho 4oy (22)

crorf,s*+ g5+ hy

and j(b) = - log(f,/# + g,b + ;). The contours of integra-
tion C’ proceed from k; to a finite or infinite upper
limit along a path such that the limit of exp[zb + c(b)] as
b approaches the upper limit on the contour is zero.
The contours of integration C’(b) proceed from klA to

b, a point on C’. Note that c¢(b) is a multivalued function
of b depending on the character of C’. Contours of in-
tegration C’ are of two types: those for which the upper
limit is a root of the equation P, =0, where P, =f b2
+g,b +h,, and the limit of expc(b) as b approaches the
upper limit on the contour is zero; and those for which
the upper limit is at infinity and the limit of exp[zb
+¢(b)] as b approaches the upper limit on the contour
is zero.

We consider the former case first. If the poly-
nomial P, is of second degree and has edual roots or
if P, is of first degree, the values of the coefficients in
the integrand of ¢(b) determine whether or not it is pos-
sible to satisfy the condition that the limit of expc(b) as
b approaches the upper limit on the contour is zero.
If P, is a perfect square, it is always possible to satisfy
this condition by choosing the contour of integration so
that its directed tangent at the upper limit lies within
a suitable range of directions. In thig case it is con-
venient to introduce the transforniation of variable of
integration p=(b -b )™, where b, is the (repeated) root
of the equation P, =0.

The possibility that the equation P,=0, where P,
=f,b% +g,b + Iy, has a root (or roots) in common with
the equation P, =0 must be investigated in specific
cases.

Consider now contours of integration C’ for which the
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upper limit is at infinity and the limit of exp[zb + ¢(d)]
as b approaches the upper limit on the contour is zero.
The values of the coefficients in the integrand of c{b)
determine the dominant asymptotic behavior of c(b) as
b approaches infinity. Since f,#0, it can be proportional
to b, b%, or b, If it is proportional to »° or b?, the
contour of integration can always be chosen to approach
infinity in 4 range of directions such that the limit of
exp[zb + c(b)] is zero. If the dominant asymptotic be-
havior of c(b) is proportional to b, the contour of inte-
gration can be chosen to approach infinity in a range of
directions such that the limit of exp[zb + c(b)] is zero,
except for a single (possibly complex) value of z,

The extension of Subclass 1 to equations in which the
inhoraogeneous term is z" exp(k,z +k,), where n is a
positive integer, does not introduce integral represen-
tations distinct from the basic integral representation,
To see this, it is sufficient to treat the case n =1, An
integral representation for n=1 is given by vy,
= (ayo/ax)&hh, where v, is the representation given in
{21). The result is
f:lef +g0kl + /l) N (23)

v, = exp[zk, + k, + j(k,)]- PRk Yo
J1™M 1 1

It may be possible to treat, in an approximate man-
ner, equations with more general inhomogeneous terms.
On the range 0 <z <, it may be possible to approximate
an inhomogeneous term by a reasonable number of
terms of an expansion in weighted Laguerre polynomials.
We have shown that the extension of Subclass 1 to equa-
tions in which the inhomogeneous term is z”exp(k,z
+ k) does not introduce integral representations dis-
tinct from the basic integral representation. Thus the
approximate representation of a particular integral of
an equation with a more general inhomogeneous term
may be relatively convenient.

5. SUBCLASS 2

The remaining alternative for satisfying (16) is that
a is not identically equal to zero but that f, =4, =0.
Then a can be determined in terms of elementary
transcendental functions of { by integration of (17) sub-
ject to the condition a(0)=k,.

If g,#0 and h,+0, it is impossible to determine «,
b, and ¢ in terms of algebraic and elementary tran-
scendental functions. One can see this by inspection of
the explicit expression for a(f) obtained from (17) and
the expressions for b as a functional of a and for ¢ as
a functional of a and b obtained from (18) and (19), re-
spectively. In terms of the quantities y = 4f,a, v,
=g * (g2 - 4f 1,2, and k,=4f,k,, al(t) is given by the
relation
y(t)
_v.expl3ly, =¥t - 3InP] - y_exp| - 3y, = y.)t + 3InP]
= expla(y, -y~ 3lnP] - exp[- 3(y, -y} + ZInP]
(24)
where P =[(x, -v,)/(x, =v.)]. The value of y is indepen-
dent of the branch of InP chosen. Note that if g, =0 and
h,+0, v is given by the relation

y =L infsinhl5(t - ), )
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where 5 = 2(-f,,)*/? and t,=(26)In](x, - 8)/(k, +3)].
The value of ¥ is independent of the branch of the square
root which is chosen for 6 and the branch of the log-
arithm which is chosen in (25). The expressions for

b and ¢ are

b(t)=exp{- fot (4f,a(t') + g ] at'}
X[k, = f(f expf{ fot'[4f°a(t”) + g, lat"}

x [2g,a(t') +h,Jat’' ] (26)
and

c(t)=ky = [ Ullb()F +2a(t)}
+g () + hyldt . (27)

If, on the other hand, g,=g,=h,=0 and &, #0, the
determination of @, b, and ¢ in terms of algebraic and
elementary transcendental functions is a relatively
simple matter. If we impose the condition that g, =0,
it is unnecessary to limit further the class of dif-
ferential equations for which we can obtain ingegral
representations by imposing the conditions g, =#,=0.
Instead, we take advantage of the perceived simplifica-
tion by introducing certain transformations of dependent
and independent variables. These transformations per-
mit us to apply our method to a transformed differential
equation, instead of the original equation. In it, the
coefficients of powers of the transformed independent
variable in the linear differential operator which vanish
are those that correspond to g, and %,, in addition to
those that correspond to f,, f,, £,, and g,. Thus Sub-
class 2 consists of the equations

TV + &V + (1,22 + hyz + by (2)
=explk,2® +k z+ k), (28)
in which additional coefficients may vanish,
The transformations of dependent and independent
variables are the following. The solution of (28) is
given by y(z) =u(2)u(z), where u(z) = exp{- (g,/2f,)[z

+(hy/2m)]}, 0(2) =wlx), x=(hy/f)*/*[2z + (ny/2})], and
w(x) is a particular integral of the equation

f—;-)+(x - Bw(x)=exp(lx® +1,x +1). (29)

Note that, even if z is real, x may be complex. In this
equation

1 g 1 B

B=a73rp 2+4W —7‘%5, (30)

2 =k2(fo/h2)l/2, (31)
kB, fMh, kY4 1 g

1=-—2{§7rl+j§r+§fg7ﬁlyq—, (32)
1&n2 1R

A Z—%l-g— 5—!}}4 + ko= log(fohy ) /2, (33)

Henceforth, for the purpose of determining integral
representations of the transformed equation (29), we
make the replacements w—~y, x ~z, I,~k,, I, ~k,,
and [, —k,. We assume integral representations of the
form described in Sec, 3.

The determination of the complete set of possible
contours of integration for integral representations is
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simplified considerably by choosing as the variable of
integration a instead of £. We thereby obtain represen-
tations in the form

p(z2)=~ fcn expl 2% + zbla) + cla) + m(a))da, (34)

where m(a)=—log[4(a® + )] and C” are contours of in-
tegration which proceed from the point ¢ =%, and
satisfy the conditions stated in Sec. 3. The functions
b(a) and c(a) are determined in the following manner.
Combining (17) and (18) and integrating the resulting
differential equation subject to the conditions a(¢=0)
=k, and b(t=0)=F,, we obtain the result

Ka) =B(a®+ 3)/2, (35)

where B =k, (R + 1y1/2, Proceeding in similar fashion
with (17) and (19), eliminating &* from (19) by the use
of (35), and imposing the conditions a(f =0) =k, and
c{t=0)=k,, we obtain the result

+1

cla) = iB%a - k)-&-qlog<2 4)

36
- 18tan™(2a) + Btan™(2k,) + k. (36)

It is convenient for the purpose of determining contours

of integration to express the inverse tangent in terms

of logarithmic functions by the relation

tan"(2a) = ¢ log [— (QL%-Z)] . (37)

a—-3t

Contours of integration C” are of two types: those for
which the upper limit is a=+ 3/ and the limit of
expc(a) as a approaches the upper limit on the contour
is zero; and those for which the upper limit is at infinity
and the limit of exp{z%a + zb(a} + c{a)] as a approaches
the upper limit on the contour is zero. With regard to
the former type of contour, note from (36) and (37) that
if ImB > — 1, the upper limit ¢ = — 3 must be chosen.
If Img <1, the upper limit a =3 must be chosen. Note
that either contour of integration may be used in the
region —1<ImgB <1, The use of the variable of integra-
tion ¢ =2¢, where o =-tan™ (2a), may be convenient
for purposes of approximation and computation because
the upper limit of integration is at infinity, Compare
the Appendix. With regard to the latter type of contour,
note that the dominant asymptotic behavior of the
quantity [2z2a + zb(a) + c(a)] as a increases without limit
is (22 + Bz + £B?)a. Thus one requires that the contour
of integration approach infinity within the range of direc-
tions for which Re[(22 + Bz + $B%)a]< 0. At the value of
z for which the quantity (z2 + Bz + 1B?) vanishes, the
condition cannot be satisfied.

In contrast to the case of Subclass 1, the extension
of Subclass 2 to equations in which the inhomogeneous
term is 2" exp(®,2° + k,2 + k), where » is a positive
integer, introduces integral representations distinct
from the basic integral representation. To see this,
it is sufficient to treat the case #=1. An integral re-
presentation for #=1 is given by y, = (ay(,/ax)lh,,l, where
Y, is the representation given in (34). The integrand of
yl differs from that of v, by the factor [z(#2 + §)™'/?

X (@®+ )2+ 3k, (k2 + ) a~k,)]. The contours of in-
tegration for the addltlonal integral representations
are the same as the contours for »,.
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It may be possible to treat, in an approximate man-

ner, equations with more general inhomogeneous terms.

On the range — ©<z <<, it may be possible to ap-
proximate an inhomogeneous term by a reasonable num-
ber of terms of an expansion in weighted Hermite poly-
nomials. We have shown that the extension of Subclass
2 to equations in which the inhomogeneous term is

2" exp(ky2® + k2 + k) introduces integral representations
distinct from the basic integral representation, Thus
the approximate representation of a particular integral
of an equation with a more general inhomogeneous term
may be relatively less convenient than in the case of
Subclass 1.

6. DISCUSSION

We now discuss various aspects of the method which
we have presented.

An obvious question arises concerning the relation
of the method to the theory of integral representations
of homogeneous differential equations.! The integrands
of integral representations of equations of Subclass 1
are the same as those of the corresponding homo-
geneous equations based upon the Laplace kernel
exp(zb). The contours of integration of the integral re-
presentations of inhomogeneous equations differ from
those of representations of homogeneous equations, In
the former case, the limits of integration and the con-
tour along which the integral is taken are such that at
the lower limit of integration the bilinear concomitant
is equal to minus the inhomogeneous term and, as the
upper limit of integration is approached, the bilinear
concomitant approaches zero. In the latter case, of
course, the limits of integration and the contour along
which the integral is taken is such that the bilinear con-
comitant returns to its initial value at the end of the
contour. The integral representations of equations of
Subclass 2 are similarly related to those of the corre-
sponding homogeneous equations based upon the Laplace
kernel exp(z®¢) only if I, vanishes. Otherwise, a kernel
canot be found, As a practical matter, this requires
that k, =g,=0 and that 2, =0 or h, =0, Thus, for ex-
ample, in consequence of the requirement that &, =0,
representations of equations with inhomogeneous terms
2™ exp(k,2% + k,2 + k,), where n=0, 1, 2, ..., can-
not be related to integral representations of the cor-
responding homogeneous equations,

Various transformations of the variable of integra-
tion may be used to cast an integral representation in
a form which is particularly convenient for approxi-
mate analytic or numerical evaluation. Although b and
a have been used in presenting the development of the
method for Subclasses 1 and 2, respectively, in par-
ticular cases it may be desirable to use the original
variable of integration, f,

The method presented here should be applicable to
a wide range of problems in theoretical physics. One
particular area of application is wave propagation in
inhomogeneous media, such as plasma. Another is
resistive boundary layer problems of magnetohydro-
dynamics, such as those of tearing modes and resistive
internal kink modes. ®
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APPENDIX: DERIVATION OF (7)

In the case of (4), integral representations can be
obtained in a straightforward manner by the use of
Fourier transforms. A solution y(z)=exp(3i22) ¥(v),
where v=2%, is assumed. The function ¥(v) is a solu-
tion of the inhomogeneous differential equation

iv¥” + (ic — V)¥’ - a¥(v) = ¥ exp( - 3iv), (A1)

where a= :1;(1 +ig)and ¢ = % Introducing the Fourier
transform

¥(g)= f_’: T(v)etevdy, (A2)

we obtain the following first-order differential equa-
tion in the transform variable,

% lglg + 1)¥] = (cq + a)¥ = $min(g + D). (A3)

In this equation, 0 is the Dirac delta function, Defining
the quantities 8(q) = q(g + 1)¥(q) and S(gq) =(cq + a)/
g{g+ 1), we obtain a differential equation for &, which
may be integrated from the constant value ¢, to ¢ to
give
B(g)=exp( [ '5dq"1(go)
+ ini f:o exp( f; Sdq")s(q’ + $)dq’. (A4)

We may choose g, =+ and B(xx)=0. We thereby
obtain, respectively,

8(g)=7tmiexp( [, Sdg W[ #(q + 1)), (A5)

where u is the unit step function. Expressing :I'l(q) in
terms of &, determining the inverse transform,

¥0) =5 [2 e B(g)dg, (46)

and expressing y(2) in terms of ¥(v), we finally obtain
the integral representations

1. F %o . 1 " q ’ 1
y(2y=qi f-;/z exp [(22 + 3)g + J_l/z Sdq') mdq. (AT)

In order to determine the conditions under which these
two solutions are valid, it is necessary to examine the
guantity

S sdq -logla(g+1)]

-1/2

=}~ 3 +ig)ogg - 3(3 +ialog(g + 1)

- 3(1 +ia)log(— 3) + 5(- 1 +ia)log(3). (A8)

If the upper limit of integration in (A7) is — «, the path
of integration contains the point g =~ 1. Accordingly,
the existence of the integral requires that the condition
Ima > -1 be satisfied. If the upper limit is + =, the
path of integration contains the point ¢ =0 and the con-
dition Ima < 1 must be satisfied. Note that either re-
presentation may be used in the region -~ 1<Ime<1.
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The latter choice is appropriate in the case of electro-
static linear mode conversion in a parabolic density
profile because Im{«) is proportional to minus the col-
lision frequency.

Operation of the linear differential operator of (3)
on the integral representation (5) produces an integral
of a derivative of a function of the variable of integra-
tion. At the upper limit of integration the function
vanishes. At the lower limit it produces the inhomo-
geneous term. Such is not the case when the linear
differential operator of (4) operates on the integral
representations (A7). There is an important difference
between the two sets of integral representations {5)
and (A7). Representing a particular inhomogeneous
equation as

Ly(z)=R(2), (A9)
we see that the representation (5) is of the form
y(z):fc expF(z;t)dt,

where =0 is the lower limit of integration and
expf(z;0)=R(z). In contrast, the representations (A7)
are of the form

¥(2)= [, explF(z;)]6(0)dt, (A11)

where, as before, expF(z;0)=R(z), and G(¢) is a non-
constant function of the variable of integration. Integral
representations of (4) which are of the form (A10) can
be obtained by the introduction of a transformation of
the variable of integration. The desired transformation
of variable of integration is defined by the relation

do = #i{g(g + 1))*dq and the correspondence of ¢=— 3
with 0 =0. The direct and inverse transformations are,
respectively, o=13i{log(q/(q+1)]=log(~ 1)}, where

the same branch of the logarithmic function is choosen

(A10)

641 J. Math. Phys., Vol. 19, No. 3, March 1978

in both terms, and g= - (1 + exp2ic)-'. Introducing the
transformation into (A7), we obtain the integral repre-
sentations

y(z):fc exp{ - $2%ano + tac
[¢F3

+ log| 3(cosa)*/?] }do, (A12)

The contours of integration C,, consist of two segments.
The first, which we denote by C,, proceeds from the
origin to upper limits at » +i%, where 7 is a finite real
number. The second segment proceeds from v i« to
w(2n+1), where n=0, +1, +2,--+, Since in this case
F(z;v +i)=F[z;3m(2n+ 1)) =0, the parts of the integral
representations whose contours of integration are the
second segments are solutions of the homogeneous
equation corresponding to (4). We choose to omit them
and thereby obtain the integral representations

y(2) = fc=E exp{ - $2%tanc + Lao

+log[3(cosa)/2) }do,

which appear in (7).

(A13)
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Quantization of spinor fields

Piotr Garbaczewski

Institute of Theoretical Physies, University of Wroclaw, Cybulskiego 36, 50-205 Wroclaw, Poland

(Received 16 February 1977)

Influenced by Klauder’s investigations on the same subject, we study the question of correspondence
principle for Dirac fields, looking for its formulation without use of Grassman algebras. We prove that
with each Fermi operator (the series with respect to asymptotic free fields): QMU ¥): one can associate the
functional Q€(UC, T¢) with respect to classical spinor fields. Here the projector 1 and the Hilbert (Fock)

space Jp =1, fry are given such that the identity 1,: Q°QE, ) 1, 7/ =

Q(Y, m'):jp defines the

mediating boson level, where coherent state expectation values of operator expressions are in order:
COCWE, Ty =0, T). For proofs we employ functional differentiation (resp. integration)
methods, especially in connection with the use of functional representations of the CCR and CAR

algebras.

1. THE CORRESPONDENCE PRINCIPLE FOR
SCALAR FIELDS

In the present paper we shall not go beyond the frame-
work of the conventional quantum field theory, and all
considerations are essentially based on its LSZ formu-
lation.! The basic assumption here is that any operator
quantity characterizing a given quantum system (scalar
field) admits a decomposition into power series expan-
sions with respect to normal ordered products of free
asymptotic fields. With a given scalar quantum field

o (x) , o P ) = olx),

out

we associate an algebra of all operators,

1 F(@) .’::E,(fn, ™) 1.1

where (*,) is a bilinear form, and the Schwartz nuclear
theorem allows us to consider (f,, : ¢":) in the form
(far 1 @)= [ dyee [ dx (%)

X, =g, 00 vy Xn), X Myl

()O(X‘]) e ‘10(7("):
(1.2)

In general there appears the highly nontrivial task of
recovering conditions, necessary to impose on coef-
ficient functions (distributions) {f,}, to get proper alge-
braic properties on a suitably chosen domain, We do
not bother with this question in the course of the paper.
With the Fock representation of the CCR algebra
(asymptotic condition) in mind, {a*,a, Qgty, K=L*(RY),
we introduce a coherent state domain for our operator
algebra according to

[HRY) = o, ((\,5):‘];113

) = exple o [2/2) exp(o, a*) 2,

Al a(l) o (k) = ||or |12,
(1.3)

a)=laRy =a(k), k= =3,

(ejalk)

If a,d appear as clqssmﬂ (complex) Fourier amplitudes
of <ﬂ( Do, @~ a,a* = 0(x) —~ p(x), we get

(o] ol )]0) (\)>:(§’(X),

(] () [0) = F(E) =T (s 57 a9
The formula (1. 4) establishes a corvespondence between
the quantum and classical level of a given (scalav) field
and the associaled algebra. All the algebraic manipula-
tions appearing on the guantum level induce correspond-
ing relations on the classical level, and therefore many
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essential questions as, e.g., estimates {concerning the
convergence of operator series, criterions for joint
multiplication) are transferred onto the classical level,
where powerful analytic methods allowing to solve them
are known {compare Ref. 2). In connection with those
probiems, it is extremely useful to employ so-called

functional rvepresentations of the CCR algebra, arising

in the theory of the functional power series.? Namely,
let us assume that we have given the Hilbert space
[Bargmann space B{/X®R%)] of all functional power
series V{(0):

V(@) =22 (1/Vn!) (w,, a")
=2 /) [ i v, Gll) Ty,
dk,, :dki ..

V=@ 0= (3] V@ 5.0=T @10

*dky,

=2 = f V) V@ expl- 7,1]d £ . (1.5)

v

where d/d0 symbolizes the Gateaux derivative with
respect to @ = /*(IR%), while d(y/¥) the functional
(Gaussian path) integration measure, compare Ref. 2
and J. Rzewuski’s monograph.®

In A{/*(R)) we assume (Ref. 2) to have defined an
algebra of double power series:

1 = my 1
R L JE2

X @y (8, P) @ (g * < @ () 4 pg) * * = ()
% it (% b 07)
=4 <a5 a%) B(?ya)l;so

- fA(E,y)B()./,oz)exp[— (7,7)]61(%) )

N

Ala, a)=2 2

AB)(a, @)=

@@ =@ =3 2 (T v, @)

w T
:A( < ) V) 7e0= fA(a,y) V)
xexpl~(¥,v)]d (7::) .
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The underlying Hilbert space and the algebra can be
derived from much worse defined objects by applying
suitable analytic restrictions (their study in the frame-
work of double functional power series is given in

Ref, 2).

In the course of the paper, we do not pretend to give
highly correct meaning to the notion of functional (path)
integrals (see, e.g., Ref. 4); all the definitions estab-
lishing a sufficient axiomatization of the formalism can
be found in Rzewuski’s monograph, 3

Theorem 1 (functional vepresentation of the CCR):
Double power series (a,f) exp(a, @) =a(f)* (¢, a),
(7, ) expla, @) =a(A(@, @), f= [R), play in 75
=A(L*(R%) the role of generators a(f)*, a(f) respec-
tively of the Fock representation of the CCR algebra
with the vacuum vector Q5 =1 {the whole set of complex
numbers € spans in fact the vacuum sector).

Proof: Given in Refs. 2, 5; for further convenience
we shall only quote

la(), a(g)*].(a, a)=(F,g) exp(a, @) = (£, g) 15(a, @),
[a(p),a(g)] (@, a)=0, (a(r)Q2p)(@)=0
1.7
As a corollary to Theorem 1, one can easily prove:

Lemma 1: For any F($)=A(a, o) (after suitable re-
ordering of summations and integrations), the double

power series F($) exp(a, @) play in 7p B(LZ(IRS)) the
role of the operator : F(p):
1F(9): (@, ) =F(d) exp(@, a). (1.8)

Proof: Immediate, by applying (1.6); see also Ref. 2.
In consequence, in addition to the correspondence rule
(1.4) we can formulate the quantization principle (1. 8)
allowing to reconstruct immediately the quantum object
from a given classical object. Here (see Rzewuski’s
monograph) the algebraic structure on the quantum level
induces a corresponding structure on the classical
leval:

1Fy(0): 1 Fy(p): = ( Fy(9):  Fy(0))(a, @)
= exp(d, @) {F(9)(¥) Fy(@)} = exp(@, @) Fy5(®)

=1 F(@):(@, a) = : Fyy(@):, (1.9)
where
d . d
(*) —eXp(E-(zz,' A ;5) 5

d . d . d
%'AE&-;.— /—F)A(x y ()dxdy., (1.10)

Arrows indicate the direction in which operators act,
and A(x - y) is the Pauli—Jordan distribution.

The identity (1.9) recovers what is the relation be-
tween the quantum and (implied) classical multiplication
rules. The situation appearing can be summarized in
the following:

Correspondence principle: (i) Correspondence rule:

{: F(o):}~ {F(O)}:
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(o] : F(@):|a)=F(p),

(@]:Fyl0): o) )=y exp (1 5 7% ) Fud

=Fy{p).
(1.11)
(ii) Quantization vule: {F(9)}~{:F(p):}:

F(§) exp(a, o) =:F(p): (@, a) = : F(o):,

1Fy(@):)(@, @) = 1 Fpy(p):.
(1.12)

Fyp(9) exp(@, a) = (: Fy(p):

Commonly, the quantization is believed to be per-
formed, if the Green’s functions are given. For this
purpose, one needs, however, the knowledge of the
generating functional:

[ expfilS + [ dx n(x) o(x)]} pd (M @ /Vim)
TexpGS)dM b/ Vi

where S is the classical action, M is an arbitrary linear
operator, and ¢ a quite arbitrary scalar field. The
integration measure d(M®/Vim) is defined according to
Rzewuski’s monograph® (Fresnel integral).

Zn) =

(1.13)

The two-point Green’s function is then given by

Glx,y)= ZM) ineo - (1.14)

dn(x) dn(y)

In the above, 7 is a suitable classical source function,
It is useful to know that, in the free field case, Z()
reduces to

z(n) = expl- (i/2) [ n(x) Glx, v)n(y)dx dy],

where A is one of the Green’s functions of the KG
operator (the arbitrariness exists), usually chosen to
be the causal function.

(1.15)

2. INTRODUCTION TO THE PROBLEM: FERMIONS

Pragmatists working in the domain of quantum field
theory are strongly convinced (see, e.g., Coleman’s
opinion expressed in Ref. 6) that quite satisfactory
(though even not fully correct) classical level for the
algebra associated with any Fermi (Dirac, say) field
is given in the framework of Grassman algebras, which
are built of c-number-like, but anticommuting objects.
This last property manifestly exhibits the Pauli exclu-
sion principle, influencing the starting Fermion level,
Investigations®” have been going in this direction
(especially because of the similarity of the formal
scheme, allowing us to reproduce all the results in the
manner analogous to this of Bose case). There was even
founded a complete mathematical theory (Berezin’s®
monograph) of anticommuting numbers in functional-like
differentiation and integration procedures.

Let us add that if in Theorem 1 we formally put ele-
ments of the anticommuting ring in place of square in-
tegrable functions, a Fock representation of the CAR
would be obtained (see, e.g., Garbaczewski,® where a
complete construction is given).

If we follow the Grassmanian way, the generating
functional (the notion used here in rather ambiguous
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meaning) for the Green’s functions of the Dirac field
reads

T exp(iS + [ [7(x) D) +nx) dx)] dxk » a0 Nim)
fexp(zS)d(AM?'—.rr)

Zm,m=

2.1)
(M is an arbitrary linear operator). If electromagnetic
interactions are taken into account (with the Faddeev—
Popov measure 5 4; see Popov’s monographz), then

ZM, 0,0 ) =

[ explilS + J @Y + dm +n, A*) dx 1} 0p 4 d(M/Nim)
Jexp(iS) ou , d(ME/Vir ’

(2.2)

where 1,7,7, are sources of fields ¢, J), A, respec-
tively, Notice that 7, n ¥, P belong to the Grassman
algebra, and 6, integrates over classes (orbits with
respect to the gauge group).

On the other hand it is perfectly well known that one
can always construct the set of (c-valued!) functional
power series with respect to free Dirac fields and equip
this set with a suitable topology and algebraic structure.
So, it is rather surprising that no reasonable corre-
spondence with the (prospective) quantum level was
found. Really, the Pauli exclusion pvinciple does nol
govern the considered classical level, in contras! lo the
Grassman approach.

At this point we do not wish to tilt at windmills and
advocate this pure c-number point of view, against the
just-described Grassman tools (especially because these
last are widely spread and quite convenient in explicit
calculations). We wish, however, to prove that the rea-
sonable corvespondence principle can be established
between functional power sevies of Divac spinors and
operaloy sevies with vespect to novmal pyoducts of
Dirac fevmions. This correspondence will be estab-
lished in a correct and unambiguous way with no refer-
ence to Grassman methods.

Let us mention the two isolated attempts in this direc-
tion which are known to the author; see, e.g., Ref. 8.
It was proved that c-number images of Fermion func-
tionals do exist. Another possibility8 was to construct
a pure operator theory where functional-like differen-
tiations and integrations would be carried out with
respect to operators. In the {ree field case, the gen-
erating functional (2.2) reads

Z(n,,m.) =expl~7 [ 7) Glx - y)n{v)dx dy

=5 (M@ DE (= y)n,(v)drdy], (2.3)
where
Gl =) =@m* [ dp explipCe -] 7T -

72 2 J
DY (x — v) = @m)* [ dk expliklr — 3] :—](—ffi-%#f-ll .
The choice of the causal function is justified by the
need for uniqueness of the expressions in exponents;
the arbitrariness mentioned in connection with scalar
case is thus removed. The integral received gives
the photon part in the Lorentz gauge. For more details,

see Ref, 3.
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Let us add that the functional (Grassman level)
definition of the two-point Green’s function corre-
sponding to the spinor field, by the use of (anticommut-
ing) derivatives with respect to sources, reads

. . d*Z,0,1,)

G N = - —‘:—"L—‘L— . 2.
wols ¥) == G (%) 1o (2.5)

3. INTERLUDE: BOSON EXPANSION METHOD IN

THE QUANTUM THEORY OF FERMIONS

Realizing the program sketched in Sec. 2, we intend
to close, by the present paper, the series,® developing
the method of Boson expansions in application to Fermi
systems. The first two papers of Ref, 8, of these
series, include in fact an attempt to apply a c-number
language in the functional formulation of the quantum
theory of Fermi systems: So-called functional repre-
sentations of the CAR algebra were invented there.
The third paper of Ref. 5, of these series, generalizing
results of the previous two onto the algebraic level,
began a systematic study of the “bosonization” question
(the term used by us as the shorthand version of the
title of this section) from both mathematical and physi-
cal points of view.

Theovem 2 (representation of the CAR): Let us de-
note o,(k,)=0(kq,..., k), kcIR?, the Friedrichs—
Klauder sign function®? being a continuous generaliza-
tion of the n-point Levi-Civitia tensor. Let
{a*, a QB}L (r3 generate a Fock representation of
the CCR algebra over the Hilbert space /%(IR?). The
underlying Fock space we denote /5. Then, the triple
{b*, b, QB}LZ(IR3) with

(a*,a):fd}ea*(k)(t(k),
b(f)=:expl- (a*,a)]* 25 (1/VnlmT)

X [ dit, [ APy Fum(Res )
Xa*(ky)« ra*(k,) a(pg) = alpy) :,
Fom @y B =V 18,1 1100, (K) (1) O1n(Pyn)
X 8(leg ~ py) O(ky = p3) ° = O(ky ~ Pyuy)

generates a Fock representation of the CAR algebra
over [*(IR?), whose (Fock) representation space 7 is
selected from 75 due to projection properties of the
operator unit 1,:

(A, b(*l.=(F,2) LF,

(3.1)

(3.2)

1

17=:exp(- (a*,a)]° p

.[dk,,a*(ln) > a* (k) 05 (k,)
X (1(731) o (l(k,,) oy

7 r=1p I5 »

which implies the coincidence of the vacuun and onc-
particle sectors for the representations (CCR and CAR
respectively).

Pyoof: Details are given in Ref. 8 and in the first
paper of Ref. 5. The only difference lies in that we use
an explicit form E,(,, B,) =0,K,) 6(k; ~ py) ©* ° 8(k, — p)
of the integral kernel of the square root of the abstract
projector E? appearing in the original derivation,

Comments: (i) The extension of Theorem 2 to an
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arbitrary number of internal degrees of freedom is
nearly immediate, and, by the substitutions

77 * . *
f _’fs’ a’ a as? as 3

6(k1 —Pm) - asl'thi : 5(kl —pl+l)

fdk,,"(zs_:/ fdkn, on(Kn)_'Un(Sann)’

(a*,a) —~ (a*,a) = ? J dk a¥ (k) ag(k), (3.3)

we get the pair of Fock representations (CCR and CAR)
spanned over 4 /*(IR%) = f,, and hence with the number
N of internal degrees of freedom.

(ii) By virtue of this result and the Haag—LSZ con-
jecture (compare Sec. 1), we can associate with each
quantum field theory (QFT) of the boson system
{asymptotic free bosons) the corresponding QFT of the
fermion system (asymptotic free fermions). In the rela-
tivistic theory when the number of space—time dimen-
sions is equal to two, the above conclusion can be
proved in many ways; compare, e, g., Ref. 10, If
Minkowski space is taken into account, then because
both fermions and bosons have same number of inter-
nal degrees of freedom, one of those systems should
violate assumptions of the spin-statistics theorem,
Hence if the former field is the physical one, the latter

can appear as a swbsidiary (ghost) entity, or conversely.

(iii) On the other hand, if relativistic restrictions
can be abandoned, the whole variety of interesting cor-
respondences can be studied. For example, if we con-
sider the low temperature limit of the Heisenberg
ferromagnet, it is well known that the free magnon
gas (bosons) behaves like the Heisenberg crystal itself.
And really we have proved® that if the ferromagnet
Hamiltonian is H, then there exists the boson {magnons)
lattice Hamiltonian Hgz and a projection P in the boson
Fock space Jp such that H=PyHgzP; and P, 75 =7, is
the Hilbert space of spin states of the Heisenberg
ferromagnet.

An analogous effect was observed in the macroscopic
model of the atomic nuclei (four-fermion interaction)
where atomic spectra in weak excitation limit look like
those of quadrupole bosons, Here the underlying boson
Hamiltonian Hy includes a two-boson interaction term,
where each Boson corresponds to the Cooper pair of
(starting) fermions.

Suitable modification of Theorem 2 was also used by
us to make a transition from boson to fermion variables
in the ultralocal quantization attempt for sine—Gordon
1-solitons. (This was the model study of the quantiza-
tion procedure, where by starting from the classical
level, through the subsidiary boson level, the final
physical Fevmion level is achieved),

Theorem 3 (functional vepresentation of the CAR):
Double power series

_v — 1
b(f)(a,a)_z:m} s fdkﬂ fdpm{vn+15m,1m0n(1§1)

Xf(p:) Uhn(p‘lm) 6(1"1 "]‘72)
X 8(ky — p3) >t 5y~ Pran)t
X a(feg) == alk,) alpg) e alpy,,)
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-y 1

nm W (fnms &"O'm) b(f)*(&_, CY) = b(f)((y’ a)

(3.4)

play in L 75 = 7, the role of generators b(f)*, b(f)
respectively of the Fock representation of the CAR
algebra:

(1, b{e)* Lo, )= (F,8) 15(@, ),

=1, 1,3, 0)=2 nl—, (@, o2am), (3.5)
Proof: The above theorem is a corollary to Theorem
2, and can be proved by making use of Theorem 1 and
calculating the functional representation of objects
appearing in (3.1), (3.2). It is useful to recall the
formula (1. 8): F(w, o) exp(a, o) =: Fla*, a): (@, ).

The fermion subspace of the Bargmann space is here
given by

Ve B(LY(RY),
53 <E, d%/) V(77)17=0
- Ju@E v (L)

— d 1 Sn
2 () B g T

(3.6)

and includes vectors received by the Fock construction
from symmetric functions (v,02)(k,), which vanish if
any two of variables coincide.

In the Fock construction theve is no diffevence be-
tween such functions and the antisymmetric functions:

0, (w08 (k,) = (1,0,)(K,),
(3.7

(U,,O',,, O'”CY") = (11"0',2" a”),

Both kinds of them appear in the theory on an equal
footing. In this connection compare also Refs. 5, 8,
where the study of Hilbert spaces of symmetric and
antisymmetric functions is given (together with suitable
isometries between them).

4. PROJECTION THEOREMS

Let us consider an arbitrary operator:

1
. * . *ngpm
'F(b ’b)'wg‘/n!)n! (,fnm’b b ), (4-1)
whose generating triple {b*, b, 25} is associated with
the starting Bose triple {a*, a, s}, fum is a totally anti-
symmetric (z + m)-point function (distribution in
general). We have:

Lemma 2(boson expansions):

1 1
(F(*, b): = exp[- (a*,a)]° 1
(%, b): = expl- (", )] 2 == 20
X (0n+k fnm Omﬂu (I* e ak*m): 2 (4- 2)
where m denotes the reversed order of variables:
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fng(kn’ pm) :fnm(kb ey kmpm;pm-b s ,fH)-

Proof: Immediate by applying the functional tools.
Here, the fermion analog of (1.8) can be easily derived
(see Ref, 8):

1 1
>
W o T W

X (0- O,k*nak*m)

'.F(b*, b):((T,a):.

(4.3)

nek fn@om+k;

The only difference if compared with the original®
formula lies in the use of the explicit form ¢,,, of the
operators E,,, (0,,, is the alternating function),

One can also easily check the following identity:
<
:F(b*,b): =:expl-(a*, a)]* F(a*, a):
~1
=2 1 (a*
n {

. (4.4
*"(Im) QB :

£ "
" i F(a*, a):a",

F(b*,0):Q, = o
(0*,b):Qp ;"W( Fag PO

=:F(a ,a):Q5,

suggestmg the equivalence relation between : F(b*, b):
and : F(a* ,a):, wherefﬂm—cmf,,m is a symmetric func-
tion in groups of variables (m)~and {n) respectively, but
antisymmetric with respect to permutations from (m)
into (), and converselv.

In connection with (4, 4) we have the following:

Theorem 4 (projection theovem): Let 1 be given by
(3.2), 7r=1;75. The following identity

llF:Ic?(a*,a): Lpip=:7%0):7F, (4.5)

holds for all operators : F(b*, b): and :f’(a*, a): related
by (4.4).

Pyoof: The study of isometries between Hilbert
spaces of symmetric and antisymmetric functions,
performed in Ref. 8, results in the basic projection
formula:

1 n
LrFfa=Fr BVZZP -\/;—T(ﬁnoﬁ, a*") Qg

(’5"0’", b*”) QB (4~ 6)

1
so that 1,V=V=(1,V)(d)=V(x). We denote v,=1,0,,
where #, is the n-point, symmetric function and thus v,
is antisymmetric. Here, for all Ve 75, (4.5) reduces
to 1. F(a*,a): V=1F(b*,b): V. [Note that (4.5) is an
identity on the whole of 7z]. By (1.8)

L@, @)= T 2 @, oo,
. F(a*,a): (@, a) = exp(@, @) F(@, @)

=expla, a) Z} 4.7

(Fams 8"02™)

r——'

_ 1
Tam yulm! %

with

@, ;"m(yk*M):_—quk fdpm fdr,,, ]c‘,,m(P,,,rm)a(Pi)° cralp,)
xXa(rg) - alr,) algy) algy) - 3lgy) alg,)

(4.8)
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Applying (1.6), we get at once

C —
1F:F(a*’(l):(a’a):; Vnlm! :;71— h*ﬂoi*"]%"m,ak*m)’
(4.9)

while (4. 3) can be written in complete analogy with
4.7):

(R E BN (5 ) 1 1
Fat ,b).(a,a)_§ W; 21 ¢

yk+n, k+m
a 0k+nfnzlok+m7 « )'

(4,10)

In consequence (with the use of the identity v,0%=v,)
we get

E 1 VZk‘*‘Wl)!

(:F(b*,b):V)(E):m m%} .

X( Fen Uk*nfnm vk+m) (4' 11)
and
- LAY 1 V(& +m)!
(1 Fla*,0): V@ =73 == T
x (ak"’ 0?2*)10" fnm0m0k+m?)k*m)' (4'12)

To make the comparison between (4.11) and (4, 12) there
is enough to restrict considerations to respective bi-
linear forms, The integrations symbolized by the sign
{*,*) induce a nonzero counterpart only from these
functions which are ftotally symmetric both in the group
of m+ k) and (m + k) variables and vanish if any two of
variables coincide.

() (@™, 04,9, famOmOkimVis m)e The coefficient function
integrated with @*7, due to the (n)* (m) symmetry [the
change of sign if the variable from the group (n) is per-
muted with any from (m)], can be decomposed into a
sum of irreducible parts with respect to the symmetry
group. Denoting §(n, m) as the symmetrization opera-

tor, we indicate the term of interest in explicit fashion:
S(n! WZ)[U o fnm] anm[ﬂ(n7 n,l) Onom]’
O fanOm= S 00, 0,0, * Fry)

+ other decomposition terms, (4.13)

Here we have clearly emphasized [A(n, m)] the fact

that symmetrization of the expression is achieved by
the antisymmetrization of the product 0,0,

In this way we have explicitly disclosed the totally
symmetric in {k+n) and (¢ +m) variables function,
whose decomposition terms possessing another sym-
metry are annihilated by the bilinear form:

_franvk-rm = {0’2,,,74 (n) m)[onom] . ch*m} -,fn!!l Uki-m

+ other decomposition terms. 4.14)

(i) (@*", Opon fap¥sem). Repeating arguments of (i) we
must select a totally symmetric in variables (& +n) and
(= + m) decomposition term of the function .., frnVesm:
This can be obviously done by making use of (4.14):

I °k~m}0k+nfny7)k+m

+ other decomposition terms.

Oprn rmpVkem = {0,n A, mlo,0,

(4.15)
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The above symmetry analysis clearly shows that though
visually the forms (i} and (ii) are different, they clearly
coincide by virtue of performed integrations. Hence
(4.11), (4.12) coincide also. The theorem is proved.

To complete the above analysis, let us prove one
more theorem, concerning the relations

Lpa(A e Fp=0(f) F,

Lra(A* Ly Fr=b{A*Tr, (4.16)

which is the special example satisfying Theorem 4,

Theovem 5 (projected representation): Given the
Bose triple {a*, a, g} and the associated Fermi triple
{p*,b,2,}. The CAR hold on 7 for operators 1pa(f) 1
and 1pa(f)* 1, The corresponding representation of
the CAR is called the projected representation |notice
that formal operator expressions received after normal
ordering of lpa(f)ly, ULra(f)*l,, respectively, are
quite different from these for b(f), b{)*].

Pyroof: We make use of (4.11), (4.12),

(i) n=0, m =1 implies

VvR+1 — -
A (ak’ok,kaﬂ),
’ (4.17)
Vk

QOMIEES

[lpd(f)vl(a)»—;

(01 , 0% fohql’kq)
Let us notice that oo r+1 = O, SO that the second of our
bilinear forms reads (a*f, 04,40pq).

In the case of (@*#,0,1,,) we discover the antisym-
metry {change of sign) for permutations (£}* (1) so that
the only part of the symmetry group decomposition of
the product @*f which does not vanish while integrated
with the former function reads 0,,,0,a*7 :

Ot’j'fzomok a*f + other decomposition terms.

But it means that

(010,077, Oy Vhe)

= (akf’ Uhiggvkﬂ) = (aki 0k+1“k+1)7

(akfy Okvkq) =

which proves the coincidence of both expressions (4. 17).

(i) n=1, m=0 implies

[b(f)* ]((y) Z:_; — (Q/ L 3 0naq f?’k)

- . (4.18)
[ al) V1@ = T 5 (@1, 0k o).

Here the function 0%, fo,1, is (& +1)-symmetric and
appears as a suitable symmetry group decomposition
term of the function

Opat fUr 2= 10410} 04 fUp, + Other decomposition terms,
(4.19)

which is the only term not annihilated by the bilinear
form. The coincidence of both expressions (4. 18) is
thus immediate. Because identities (4. 17), (4.18) hold
for all vectors V= 7, there is obvious that denoting
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V(@) =[b(g)V](@) = (1ra(g) V)(@),
we get at once
oYV I@ =[ba(N*b(2) V(@)
=[1pa()* Lpa(g) V](@)

and, in an analogous way, with V”(a)=[b(f)*V](x)
=(Lpa(f)*V](@), we get

(4.20)

[p(2) V"l(@)=[b(2) b(N*V](@)

=[1pa(g)1za(n)* Vi), .21)
which by virtue of
[O*, b= (F8)Lr (4.22)
trivially implies
[o(N*, () Fr=l1ral(* 15, Lpalg)Lp] Fr
=(£,8) Ir, 4.28)

proving Theorem 5.

5. DIRAC FIELD: THE CORRESPONDENCE RULE

To get Fock representation of the CAR, suitable
for the description of a free Dirac field, we must start
from the triples {a*, a, QB}.:B4 w3 and {b b, Qplot 2m?
exhibiting the number four of the internal degrees
(two charge and two spin degrees) of freedom in the
theory. All previous results hold without any change
for these representations (see, e.g., Theorem 2 and
comments following it).

In the fourth paper of Ref, 8 we have analyzed the
standard construction

pro L b;"+z'b§‘:| oo L [b1+ib3
“J3 Lo +inr]’ TV2 by tib, )

proo L [PE-5] a1 [by-iby

V3 by ~ibf |’ V2 | by —iby
{the analogous formulas for boson operators), allowing
us to get the quintets: {p*, b*+ QB}@z 12
{a*, a* QB}@z 2.w3) With

(5.1)

r3dy>

("9, 0*~() .= (7, 2) Le = [b=(9), b** (D], ;

the other anticommutators vanish.

(5.2)

On the level of functional representations in the place
of @, 0 ¢ &f L2(IR3) we introduce the new Fourier
amphtudes o, a* 8, B*e} [HR®), so that

(o, @) =(a, a®) + (8, 8*) and =@ /*(RY),
a (e, a)=(a, ) expl(a, a*) + (8, 5%)],
a**((a, @) = (o*, f) expl(a, o*) + (8, B%)],
a~(N(, @)= (8, ) exp[(a, a*) + (8, 8%)),
a*(f)a, a)=(B*, A expl(a, a*) + (3, 8%)].

Functional differentiations with respect to @, ® can be
apparently translated to the language of o, a*, g, g*
according to 12 =1,2, (o, aq,, 0y, 03): =0,
A
daf]’

L2 4y, =i
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(5.3)

- + — T = +
day, V3 \do, dBf )’ day, vz \dp,



d i 4 _d d i 4 _ d
dey, ~ V3 da, " dpf ° d%, V2 dB,~ do* " (5.4)
Again, in close analogy to {1.8), any normal ordered
in the a*, a**, a", a*~ operator expression,

1
:Fla® a*’ a” *- = r———
@, @50 nmEkl ntmik!l!

X (Fampry @ "a* " a*a*"?), (5.5)

admits a straightforward functional representation:

(Fa’,a*, a7, a%): (@, o) = F(a, a*, B, B*) exp(a, a),

(5.6)
where classical Fourier amplitudes o, a®, 8, 8* appear
in the place of boson operators.

Let us extend the Haag—LSZ expansion conjectuve
to the case of the Dirac field algebra (, J are asymptot-
ic free Dirac fields):

:Q(lp, —d;): = g’l\l n—‘l’g“ (wnms :d)nam:)

)y dx,

nm #l ! 772‘! oT

wnm (xm Ym) 4)01 (.X1)

Xy, (0, )0, (g)* e Tr (3,)1. (5.7
0, T are bispinor indices and the overbar denotes Dirac
conjugation of bispinors.

It was proved in Ref. 8 that by the use of functional
representations of the CCR and CAR the operator
:Q(,¥): admits a straightforward c-number image:

e (v . __L__ my _
Q, ) (0, @) = 27 = (S, 0,070,,07) = 8@, a),

(5.8)
with a suitable (rather involved function of w,;) coef-
ficient function st¥(k,, p,), &,»=1,2,3,4, denoting
vector indices in &} /2(R%).

Unfortunately, this c-number image of : (3, 5):
cannot be related so simply as in scalar case, with
functional power series of classical fermion fields.

This seems to be a disadvantage of (5.8) if we com-
pare it to a canonical classical-like image being based
on the use of Grassman algebras (see also the fourth
paper of Ref. 8), In this last case, one can satisfac-
torily reproduce operator identities on the functional-
like level (though not in the language of ordinary c-
number functionals), We wish now to remove this dif-
ficulty, and to find the functional power series of classi-
cal spinor (Dirac) fields, being in the correspondence
relation with the starting operator series :Q($, 9):.

Theovem 6 (the covrvespondence rule): For each
operator ser1es Q(, ) one can find the functional
power sepes Q(;D lg) with respect to classical free Dirac
fields J) P, such that:

. c B — ¢, ¢ S —
(1) :Q(z.b,@: (@, ) =Q(, P) expla, o), (5.9)
B B
where ¥, § are the subsidiary Dirac fields obeying (the
thus improper) bose statistics, and
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(11) Q(d’ @ }F lF Q(d), J’-) lF}F- 5. 10)
C

The set of all functionals Scl(dj, ¥) may stand for an exact

classical image of the former set of operators : (3, J):

realized via the mediation of the subsidiary boson level.

Proof: :Q(, ): can be written in the following form,
manifestly exhibiting the normal ordering of operators
(below, the fotal antisymmetry of w,, in »+ m varia-
bles is essential)'

(R0, D=2 =, 2 @7 +Y) @ +97)m2)
1 . Zz n + -\f=p M
& it (w""‘"zk; (k) ) 12

« (1) 3@y

n;;l n‘m!k’l‘ uvop ,/dxn ,/dym ,/-de fdul

x wn;ﬁ (xm Yms Zp, U z) d)uj(xﬂ eer U) (xm)
XAy @) o0, () U5, (20) <+ U5 ()

Xy ) e (u,)

=2 m (Wap, mars & @I W@,

(5.11)
where the operators #*, * depend linearly (through
Fourier transformations) on the Fermi operators b*, b**

defined by (5. 1):
(b3 (R), b7=(p)], = 8;;8(k ~ p) Lp=[b7 (), bF*(p)]..
(5.12)

The other anticommutators vanish. Indices 7, j denote
here helicity states i,7=1,2 in contrast to bispinor
indices i, v. In (5, 11) we have clearly distinguished
two groups of operators: ¥ @)™ and y*{@")*, which in-
volve, by (5.1) the (x + m)-point product of 5*’s and

(k +1)-point product of b’s respectively.

The validity of Theorem 5 is here immediate (com-
pare also Comments to Theorem 2) so that

biy (g * = =B, (ko) BT (py) * = B () 05, (g0) ** * B3 ()

L AR A

£ omm(km pm) UE:} (q!za ) u‘F (1 (kj) * a?"(kn)
Xay*(pg) = ar” (pa) @5, (@) "+~ 05, (q)

Xa’}‘i‘(r;)-“a?‘t'(r,) Le7r, (6.13)
where £ means that the identity holds true only if in-
tegrated from both sides over all variables, with the
suitable (antisymmetric) {2 +m + k +1)-point function,
Ow(qk, ) =00, (7 ooy Py dny - 5 qy), 1. €., the tilde
reverses the order of variables.

The operators ai(k), af*(k) stand here for operators
of the ideal, fictitious, subsidiary bosons, constituting
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the mediating level in the transition from (5.9) to
(5.10).

Here obviously the fermion Fock space /7, appears as
a subspace 1y 75 of the boson Fock space 75. They are
representation spaces for triples {b b QB}@; 2®3)
{a*, a,9;} @1 Amd respectively.,

Let us now restrict consideration to the two-point
product $,.(x) ¥}(y), where we immediately get

Bulx) ¥5(y) Fr
&(1/27)° [ de(V2w,)? | dp(fz‘w”,,)-iEv**(k)v )

x expli(kx + py)]* o3k, p) L at(R) aj(p) g Fpo  (5.14)

Here again £ means the validity of (5. 14) only after
smearing with an antisymmetric two-point test function.
Here, by the use of four-dimensional Fourier trans-
formations we can introduce the sign operator ¢,, with
the integral kernel:

):ﬁ; qu /drgZ(qs”)eXp(-iqx—iry)

x explilgx’ +7v*)],

Eale' -2,y -y

(5.15)
where

x,y€ M, ¢=0,q0), 02(Q,Y)Ia0-wk——‘72(q,r) g, re R

Now, (5.14) reads
4}:»(9") ‘p;(y')}p
< (2-11?7( ﬁx ﬁyfz(x'_x,yr_y) (_2%3 dre(V2w,)

« f AEGIT 23021 ()
X expli(kx + py)|Lpa;(k) a;(p) 1z Fp

é_(2—7177‘ fdx [dy{z(x'—x,y'—y)

B B
X bpiy (x) d)u(y) IF]F

B B
L 1 (Chuth ), ¥ ) r T, (5.16)
B B

where the superscript B means that y*, §* appear as
positive and negative frequency parts of fictitious (as
violating the spin-statistics theorem) spinor fields in
which Fermi operators b*, b** are replaced by boson
operators a*, a** of the associated boson representation.

The generalization of (5.16) is obvious, leading thus
to the identity:

Yo ) U () T () T (9,)

X 45, (ag) 05, () T, () * 95, (0) F
B
= 1F<5m.wu1---wumwy c g By

B
XYz, Enet) ns Yomy 205 W) L T, (6.17)
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where the undertilde means that the order of the &+
variables is reversed, (24,...,25, %5, .00 1;)

= (%yy e euy Uy 2py.00,21). By virtue of (5.17) we get
at once the required equivalence formula (5.9):

.8 B
:ﬂ(zp,@:}'F:nF:n@,zﬁ): 1, 7
—Z; (wﬂmgﬂgmy H-F:Z)"%m:lp) }F.

nm n‘?’}l‘
(5.18)

Here the notation @, = Way ¢ m is used, We have
proved that, with each Fermi field algebra, one can
associate a projection of the subsidiary (mediating)
Bose field algebra, so that on 7 both algebras coin-
cide. On the (not projected) boson level, we have
trivially realized (5. 10) as a consequence of (5. 3)—
(5.6), so that with each operator : (9, ): we have
finally associated the functional

¢ ¢ € ¢ B B _

Q@, D =:90,D): ([, o) - exp[- (@, a)], (5.19)

(4 [

depending on classical spinor fields , § differing from
%, 9 by the replacement of operators b*, b** by classical
amplitudes [see (5.3)] a, B, a*, 8* respectively. The
theorem is proved.

Comment: (i) As a conseguence of Theorem 6 there
is enough to start from the set of funct1 als {Q(zl), h}
to get a functional representa on {: Q ,0): (@, a)} of the
set of bosgn operators {: % + whose projection
{IlF g) 1} on the Fock space 7/ is equivalent to
the pure Fermi set {: (%, §):}. This sequence of steps
allows to state the question of quantization of classical
spinor fields.

B
(ii) Note that operators : (¥, ¥): and l,,-:é(i,ilz): 1r
have the same matrix elements if calculated between
arbitrary states from 75:

(|20, :|m) = | 15 : 8, D)z 16]m),
In)e 75.

6. THE QUESTION OF ALGEBRAIC STRUCTURE

where Im),

As was emphasized in the discussion of scalar fields,
the operator multiplication on the quantum level, via
the correspondence rule, results in the multiplication
(*) on the classical level; see, e.g., (1.9).

In the case of Dirac fields, the situation is not so
obvious, because classical spinors by no reason can
account for the Pauli exclusion principle. The appear-
ance of it on the quantum level should involve serious
restrictions on the classical level,

(i) Let us recall that the set of operators {: (¢, ):}
is in th uivalence relation on % with the reduction
{I.FIQ(I% % L} of the set {: Q(zﬁ #):} of operators be-
longing to the (subsidiary) boson field algebra. By the
use of functional representation of the CCR, one can
easily reproduce a corresponding (*) operation [see,
e.g., (3.1

[: 8@, D)2 180, D:1@, @)
={&, (&, ) (0, T} exp(@, o), 6.1)
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o |- ¢ dﬁ (‘76'5%)]'

(6.2)
We have exploited here the fact that
[ [
Uy(x) =B, (x, @, B)
= [ R {15k, 2) 0,00 + v (k, ) B, ()} (6.3)

and integrals over products of ¢’s allow us to get
Green’s functions of the Dirac equation, G,
respectively:

d . d
4 &
<dﬁ! (ﬁ)

arrows indicate the direction in Wlé'lcch differential
operators act. In formulas above ¢, j are classical
functions (the commuting ring).

d
d —<
fdx y zZ o Gl ~ ) Fo’
(6.4)

(i) If we follow the Grassman methods!® (anticom-
muting ring of spinors), formulas, nearly identical
with (6.1)—(6.4) appear:

[0y, D 12,00, P):)(@, o) = exp(@, o) {9y, D) 2,2, P},
(6.5)

with (*) given by (6.2). However, here &, @ belong to
the Grassman algebra, so that we deal with the func-
tional-like representation (see, e.g., Ref. 8) of the
CAR, formally coinciding (in form) with the functional
representation of the CCR. On the ths of (6.5) ¢,J are
Fermi fields, while on the rhs there are functions
from the anticommuting ring. Obviously functional ex-
pansion coefficients w,, in {6.5) are totally antisym-
metric, while in (6, 1) we have dealt with &, &, W,
Obviously, (6.5) can be rewritten with the use of func-
tional-like (measures on Grassman algebras) integrals.
We prefer however the differential way, as significantly
simpler and easier to work with (notice an analogy of
functional power series with power series of complex
variables).

(iii) The relations between expansion coefficients of
operators : (¢, T): and : 2, (b, I): following from their
multiplications are well reproduced by (6.5). One may,
however, proceed along less formal, though unfortunate-
ly not so elegant here, c-number way of previous
sections. Here

T, Dt Q¢ D)t F

= :912(¢’$):}F: 1p:Qp@, ) 1, Fp
¢ B B ¢ B B
= Lp 2@, D)2 Lp 1 Qy08, P): U5 Fp (6.6)
so that, by Theorem 6,
¢ ¢ ¢ ¢ B B ¢ B B _ .
Qo P =294, P 1 Q(8, 0):1(0, 0) - exp[~ (@, @)]
(6.7)
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would establish the required transiation of quantum
mutliplication rule (fermions) into the classical lan-
guage, Because the representations of the CCR were
defined with respect to primary Fourier amplitudes
o, d e @f [Y(R®), we indicate the possibility of suitable
reordering of summations and integrations, writing

¢, c . — 1

Q(d),@ZF(a,a):%m (6.8)

(foms @™,
Now

fll, ) = Fu(@, o)
=[: Fy(a*, a): Lp 1 Fyla®, a):](a, &) exp|- (o, )]

:Fi(a, Oi)(*) F‘z(a—, CY),
(6.9)
where
a a - a a

(+)= exP(da , dy) 1:(0,7) exp(-cg , EE) v (6.10)
(after performing all differentiations one puts
o =vy,0=7) and
1p(, v) = expl-(, V] 1x(7,7)

._'%; 1 ; (.},km 2 k—m) (6. 11)

We have been not able to find any sensible representa—
tion of (6.9) in terms of pure c-number functions ll), ‘vr,
and thus not in terms of amplitudes a, S @} /*(R%).
However, the formal rules (6.5) can be used as a com-
plementary tool, satisfactorily reflecting relations
between expansion coefficients, which follow from
6.9), and then allow us to define a c-number functional
12(9, ) while starting from the Grassman functional
912(1P, zﬁ)' ng’fn - {n CCLn w}gn'

7. QUANTIZATION OF DIRAC FIELD

In the case of the scalar field, having given an
asymptotic free field <f), we could defme sets of opera-
tors (functionals respectively) :2(9):, ().

In the case of the Dirac fields §, T we map :Q(¢, ¥):
onto a classical level through the mediation of the
subsidiary boson level. However, this boson level it-
self allows us to consider its own classical map con-
sisgircxg from the set § of all functionals with respect
to ¥, ) whose expansion coefficients w,,, are totally
(n +m)-symmetric:

ol H=2 ——

Wams lzni}m)- (7. 1)

t,, 7
In the quantization attempts of any classical spinor

field t‘l:leory one starts from functionals & rather than
from 2. At first we must have a reduction tool 3llowing
us to transform § into the set § of functionals £, which
are the only ones of interest if it is required that the
Fermi level be achieved.

Lemma 3: There exists the reduction operator P
on §, such that

P()S:So.
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Proof: We shall introduce into our considerations
the following functional:

O(d)’ w-) Z g g,’i‘, grﬂm Zf)"wcm’ dj"f,’c)""
1 € ¢ €
=;—nlm‘.(z’b &m,{mmfzfnlbfﬁ ), (7‘2)

If we consider P, as an operator in §, acting according
to the following (functional) rule,

n dm
(POQ)(d) a;) "Z"D‘ n'ﬂ’l‘(w"im mmfmé-n d(P" do m)

s £
X, @) .

Sla

(fn (’CL", gnﬁm é’nm} ZZ"-ZEM) = S“Z(Zﬁ’ Jc)’
(7.3)

where @pp=Cn EnEnm@nm=CEp Cn Wnm, and as possessing
the expected symmetry prope’i‘ties, then w,,, is totally
(n + m)-antisymmetric. The lemma is proved. With
this selection tool, we can formulate:

nm nlm!

Theovem T (quantization vule): Given the set § of
functionals Q(zﬁqi’) then Py § =5, if equipped with the
algebraic structure (6.9), allows us the quantization
map

c ¢ B B

@, D~ 100, N: = 1,280, D: 1, Fe=:20,D: T,

(7.4)

connecting with each element & of $o the correspond-
ing element : (¢, ¥): of the Fermi field algebra. The
converse map is realized by the correspondence rule of
Theorem 6.

Proof: Repeats in fact arguments of Theorem 6,

Theorems 6 and 7, combined together, form a cor-
respondence principle for Dirac fields.

8. ON GENERATING FUNCTIONALS FOR THE
GREEN'S FUNCTIONS

The commonly used functionals (2. 1) are based on
Grassman concepts. Let us consider the functional of
the same form:

[ explil§ + S G +hady a0 A
[ exp(8) dMF/Viw) ’

with the only difference lying in the replacement of
Grassman ob]ectscby correspondmg c¢-numbers (com-
muting rm )n 7,9,9, d(sz/\/ﬁ) Functionals of the
form Z(n,n play the role played in the previous section
by $.

Zme, ) =

(8.1)

Let us introduce the following veduction of Z (n ﬁ)
Z(m, 11) = (PoZ)(n,T_ﬂ

1 (2 el A am
= ‘(571511671*”;77"‘” s :i% W)

¢ £
X Z((P, (/’) ]3:%:0' (8. 2)

For the general case, the reduction formula (8. 2) does
not look too aftractive. Let us see, however, what
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happens in the free field case, when

26,7 =expl- i@, GA)], (8.3)

where G, (x ~v) is the Green’s function of the Dirac
equation. We have defined at once the two-point Green’s
function by

s d d
rC
<v2 dﬂ d77> (;\,y) Zo(ﬁ 7?)

(ng 4 f)) (c,v) fdx’dy’

~ £
X (EgTo M (67, 9") Gorlr ~ 3) = G2, (x = ) (8.4)
which allows us to consider the reduced (boson) gen-
erating functional (8. 1) as a (c-number) generating

functional for the Green’s functions of the Dirac field.

Note added in proof: In the course of the paper the
words “classical” and “quantum” concern the c-number
and g-number levels respectively of the given theory,
and have nothing to do with any # — 0 limit. The natural
system of units Z=c =1 is employed.

A complete operator formulation of steps (5. 14)—
(5. 16), which should be more convinecing for an un-
familiar reader, can be found in the Phys. Rep. C
(1978) paper of Ref. 5.

Let us emphasize that by virtue of the projection
theorems each Bose field, which obeys the Haag—LSZ
expansion conjecture, has its corresponding fermion
contents, It happens independently of whether the spin-
statistics theorem holds or not, and makes less sur-
prising the fact that in some Bose field theory models
(as, e.g., the sine-Gordon one) fermions are allowed
to appear.

1The general structure of the quantum field theory QFT) in-
cluding functional formulation of the LSZ approach with re-
spect to scalar fields is studied in: H. Lehmann, K.
Symanzik, and W. Zimmermann, Nuovo Cimento I, 206
(1955); VI, 319 (1957); R. Haag, Dansk, Mat. Fyz. Medd.
29, 13 (1955); V. Glaser, H, Lehmann, and W, Zimmer-
mann, Nuovo Cimento VI, 1122 (1957); N.N. Bogolubov,
A.A, Logunov, and 1.1, Todorov, Axiomatic Quantum Field
Theory, in Russian (Nauka, Moscow, 1963): K. Hepp, in
Brandeis Summey Institute 1965, edited by M. Chretien and
S. Deser {(Gordon and Breach, New York, 1965).

’For an introduction to the Hilbert spaces of functional power
series and functional representations of the CCR, study of
estimates, and convergence criteria, see: J. Rzewuski, Rep.
Math. Phys. 1, 1 (1970); 1, 195 (1971); see also S. Schweber,
J. Math. Phys, 3, 831 (1962); V., Bargmann, Comm, Pure
Appl, Math, 14, 187 (1961).

IMost systematic studies of functional integration and differ-
entiation methods in application to QFT have been performed
in monographs (spinors treated in Grassman language): F.A,
Berezin, The Method of Second Quantization, in Russian
(Nauka, Moscow, 1965); J. Rzewuski, Field Theovy, Vol. II.
Functional Fovmulation of the S-Matvix Theory (liffe,
London, PWN, Warsaw, 1969); V.N, Popov, Path Integrals
in Quantum Field Theory and Statistical Physics, in Russian
(Atomizdat, Moscow, 1976),

“The so-called mathematical theory of Feynman path integrals
(with a few limitations) is covered by: C. DeWitt-Morette,
Comm, Math., Phys. 28, 47 (1972); 37, 63 (1974); S.
Albeverio and R. Hgegh-Krohn, Mathematical Theory of
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Feynman Path Integvals, Lecture Notes in Mathematics
(Springer-Verlag, Berlin, 1976),
5For boson expansion methods, as developed by the present
author, see: Comm, Math, Phys. 43, 131 (1975), “Represen-
tations of the CAR generated by representations of the CCR,
Fock case”; Bull. Acad. Polon. Sci, Ser. Astr. Phys. Math,
23, 113 (1975), “Spin-1 vector Boson structure of free spin-
1/2 quantum field”; ibid. 24, 201 (1976), “Representations of
the CAR generated by representations of the CCR, O
/isometries/”; ibid, ‘“‘Boson expansions of Jordan-Wigner
representation,” Bull, Acad, Pol, Sci. 25, 711 (1977); with
Z. Popowicz, Rep, Math. Phys, 11, 57 (1977), “Representa-
tions of the CAR generated by representations of the CCR. III,
Non Fock extension”; Proc. of the 13th Karpacz School, Acta
Univ. Wrat, 1976, “Bosonization of Fermions in QFT”,
“Bosonization of Fermions in Heisenberg ferromagnet,” in
Theovetical Physics, Memorial Book on J. Rzewuski’s 60th
Birthday (Wroclaw, 1976); “The method of Boson expansions
in the q.t. of Fermions,” Phys, Rept. C in print; with Z,
Popowicz, “Ultralocal quantizational of Sine—Gordon 1-soli-
tons,” submitted for publication; Int, Journ. Theor, Phys.
115, 809 (1977),“Remark on Kalnay theory of Fermions con-
structed from Bosons.”
8For the voice of a pragmatist, see: S, Coleman, “Secret
symmetry,” in Laws of Subnuclear Mattev, Erice Summer
Institute, edited by A. Zichichi (Academic, New York, 1975),
"Extension of the LSZ methods in terms of functional integrals
onto Dirac spinors by making use of Grassman algebra tools,
is considered in P, T, Matthews and A, Salam, Nuovo Cimento
X, 120 (1955); Yu. Novoshilov and A,V. Tulub, Usp. Fiz.
Nauk 61, 53 (1957).
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8For attempts to find a c-number formulation of the QT of
fermions, without use of Grassman algebras, see: J.R.
Klauder, Ann, Phys. (N.Y.) 11, 123 (1960}, “The action op-
tion and Feynman quantization of spinor fields in terms of
ordinary c-numbers”; F. Rohrlich, in Analytic Methods in
Mathematical Physics, edited by R, P, Gilbert and R.G. New-
ton (Gordon and Breach, New York, 1970),* The coherent
state representation and q.f.t.”; P, Garbaczewski and J.
Rzewuski, Rep. Math. Phys., 6, 431 (1974), “On generating
functionals for antisymmetric functions and their application
inq.f.t.”; P. Garbaczewski, Rep. Math, Phys. 7, 321
(1975), “Functional representations of the CAR,”
%K, 0. Friedrichs, Mathematical Aspects of the Quantum Field
Theory Fields (Interscience, New York, 1953).

For strongly selected number of investigations on fermion—
boson correspondence, especially in connection with Thiring
and sine—Gordon systems, see: S. Coleman, Phys. Rev.

D 11, 2088 (1975); S. Mandelstam, Phys. Rev, D 11, 3026
(1975); A.K, Pogrebkov and V., N, Sushko, Teor, Mat. Fiz.
24, 425 (1975); B.Schroer and J, A, Swieca, “Spin and statis-
tics of quantum kinks,” CERN preprint 1976); B, Schroer,
Q.f.t. of kinks in two-dimensional space-time,” Cargese lec-
ture notes (1976); H. Neuberger, “Bosonization in field theory
in two space-time dimensions,” Tel-Aviv preprint (1976)
(Grassman algebras involved in the study of correspondence
between Hamiltonians).

HThe influence of Grassman methods: for works on pseudome-
chanics, as an example, we suggest: I'. Casalbuoni, Nuovo
Cimento A 33, 115 (1976), “On the quantization of systems
with anticommuting variables.”
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The local von Neumann algebras for the massless scalar
free field and the free electromagnetic field
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The properties of the von Neumann algebras of local observables for the free scalar field of zero mass are
studied. The local algebras possess a lattice structure, and the duality condition is satisfied. The problem

of duality for the free electromagnetic field is discussed.

1. INTRODUCTION

In the algebraic approach to quantum field theory one
is involved with the problem of giving the general prop-
erties (axioms) of the local algebras of the observables
of the theory. The program of determining the general
algebraic structure which must constitute the natural
framework of the quantum field theory has been initiated
by Haag and Kastler! and developed in great detail in a
series of papers by Doplicher, Haag, and Roberts. ?
Between their very general axioms, the locality postu-
late, in the more stringent form of the duality condition,
has a central role.

To exploit in detail the meaning and the power of
these axioms, it is interesting to examine if they are
satisfied in some simple models, as the free field ones.
It turns out that, in the free field models, all the axioms
are very easy to verify, except the duality condition,
which requires a detailed investigation of the structure
of the local algebras. Some years ago Araki®* has
proven, for the scalar free field of mass m > 0, that
the duality condition is satisfied and that the local
algebras have a well defined lattice structure.

In this paper we extend Araki’s proof to the scalar
free field of mass m =0. Then we give a clear defini-
tion of the local algebras for the electromagnetic free
field and show that the proof of the duality condition
rests, in this case, on a well defined technical problem.
We make the ansatz that the answer to this problem
should imply that the duality condition is still satisfied.

The plan of the paper is the following, In Sec. 2 we
define the formalism needed to study the free scalar
field and we recall its well known properties. In Sec. 3
we define the Von Neumann algebras of local observa-
bles and state, in Theorems 3.3 and 3.4, their proper-
ties, already proven! for s > 0. Section 4 is devoted
to the technical lemmas and theorems which we need to
prove our results. In Sec. 5 we prove Theorem 3.4
for m =0, Finally, in Sec. 6, we study the Von Neumann
local algebras for the electromagnetic free field.

a’Re_search partially supported by the Istituto Nazionale di
Fisica Nucleare, Roma,
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2. THE FREE SCALAR FIELD

Let us consider the complex Hilbert space L*
=L¥R3, d°p/(p? + m)V/?), m >0, From L? we construct
the symmetric Fock space® 7 =, 7, where 7{" is
the symmetrized tensor product of » copies of L%, For
any fc L? there is a self-adjoint operator on 7,,% the

Segal field operator which is defined by

3,(f) = v“ la(7) +a*(P], (2.1)
where
FP V"=V +1(Fev'"), ¥ e, (2.2)

and a(7) is the adjoint of a*(7).
Let us consider the following closed subsets of L?,
K={Fe L*|F(- ) =F(p)},

K ={f= L} FE =70, -3
where F(p) is the complex conjugate of 7(p). K and K’ are
not (complex) subspaces of L?, but if we define the real
Hilbert space / whose elements are those of L%, con-
sidered as a real linear space with the real scalar
product

(fh 7'2)L :R‘e(fh }:2)L2 s (2.4)

K and K’ are orthogonal closed subspaces of / and they
satisfy the relation

=pK =K*, (2.5)

where f is the operator of multiplication by the imagi-
nary unit. Then, if fe L?, there is a unique
decomposition

F=E8+ik, ZcK, hecK (2.6)
which implies

84(F) = 8,(3) + 3,(i7) = 9(3) + (k) @.7)
where

o(3) = 71_2— [a*(3) + a()] (2.8)
and

1r(7z)= i [a* @) - a(R)] (2.9)
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are the canonical free field and the canonical conjugate
momentum,

We now want to recall the correspondence between
the Segal field operators and a class of solutions of the
Klein—Gordon wave equation,

(O+m?) Flx)=0.

Let §,(R') be the space of the C* real functions of
rapid decrease, in the four-dimensional coordinate
space, with the real inner product given by

(1, fdn= | F10) 8 (x — y) 1, (y) d*x d'y

(2.10)

= [F(D)Fa(p) 8(p* — m¥) dp, (2.11)

where

p=(py,p), p*=p}-p,

x=(x,,X), px=pox,—pP°X,

F(p)=@m)%? [ d'x explipx) £(x), (2.12)

AN ()= (27 [ d'p exp(~ipx) 6(p? — m?). (2.13)
Let us define

SR ={ne S (RY| (k) =0} (2.14)

The quotient space §,(IR*)/S°(R') is a real pre-Hilbert
space with respect to the scalar product

({f}, {g})H:(ﬂg)H’ (2.15)

where {f}, f= §,(RY), is the equivalence class of £, We
call H the completion of §,(IRY)/SCURY). It is immediate
to recognize that H can be identified with / by means
of the correspondence

{te §,@®YH/SURY — F(p) =F((p* + m/ 2, p)= /[
(2.16)

extended to all # by continuity. Moreover, to each
{rte S5, ®R"/SURY) corresponds a smooth solution of
the wave equation (2.10),

Flx)= [ d'yalx-y)A(y),

where

(2.17)

Alx) = '(é%%g f d*p exp(—ipx) 6(p* = m*) e(py), (2.18)

The function F(x) is uniquely determined by the knowl-
edge of its initial conditions a(x) =F(0, X) and b(x)
=F(0,%), which have the following expressions in terms
of f [see Eq. (2.17)].

a(x) == 212 [ d° exp(ip* x) 2(p),

b(x) = (272 [ d® explip °x)(p? + m®)  in(p), 2.19)
where [see Eq. (2.16)]

(p) + ik (p) =7(p).
Equations (2.19) imply that

a(p)=-2(@), b =" +m?) i/ h(p), (2.20)

where @(p) and b(p) are the Fourier transforms of a(x)
and b(x). From Eqgs. (2.5) and (2. 20) it easily follows
that / can be identified with the real Hilbert space
H=HM e ™, where /(™ and /™ are the real Hilbert
spaces obtained by completing the space §,(R%) of the
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real C” functions of rapid decrease with respect to the
scalar products,

(F,8)0 = f.Tp)Ef(p) %37’ , (2.21)
(7,8)= [ TP E(P wd’p, (2.22)
where
w = (p4 m®V 2, @.23)
The correspondence is the following:
f=F+ih= [ =K®BK
~ (=g, 0y H=HT DH (2.24)

Rewmark 1; The multiplication by w-! is a unitary
operator from //{™ onto #¢{™; then we can write

H=HI @t H .

Remark 2: The identification of H with #/ allows us
to express the locality properties of the Segal field
operators &,({f}), associated with suppf(x), in terms
of the supports of a(x) and b(x). In fact, if fe §,(IR*) and
suppf < () ZIR'; the function F(x) = (A*f)(x) has initial
conditions a(x) = F(0, X) and b(x) = F(0, X) which satisfy

(2.26)

(2.25)

suppa, suppb C (')’ 11 S¢u 5
where S, is the three-dimensional hypersurface at /
fixed and ()’ is the casual complement of (),

O'={x=R'|(x- v} <0, for ye O}

Remayk 3: For m> 0, ™ and #{™ are essentially
the well-known Sobolev spaces H-1/*(R%) and HY/2(IR®),
which have been studied extensively in the literature.

(2.27)

3. THE LOCAL ALGEBRAS FOR THE FREE
SCALAR FIELD

If L is a linear subspace of H, we associate with L
the Von Neumann algebra R(L) defined in the following
way’:

R(L) ={expli® ()l |ne L}, (3.1)
Analogously, if K; and K; are two linear subspaces of
K, we define

R(K;, Ky) = {explio(g) explin(h)]| g Ky, he Ky},

(3.2)

If L is a linear subspace of H and K; and K, are two
linear subspaces of K such that L~ K, ® BK,, (2.6) and
(2.16) imply that
R(L) =R(Ky, K,). (3.3)
Furthermore, since expli® ()] is a strongly continuous
function of 4, °® we have
R(L)=R(L) =R(K;, Ky). (3.4)
The lattice properties of the algebras R(L) have been
investigated in great detail by Araki. 3 Let us consider

the lattice of all closed subspaces of H, {H,!, and the
lattice of the corresponding Von Neumann algebras
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{R(H,)}, the lattice operations being,
{!\ H, :QHa ’ QR(Ha)=QR(Ha)’

(3.5)
VH,=®H,, YRE,)=[{RH,)]"
We define also a complementation,
HS =pBH,, R(H,)°=R(H,). (3.6)

Araki has shown® that:

Theovem 3.1: The complemented lattices of all
closed subspaces of H and of the corresponding Von
Neumann algebras are isomorphic:

(1) R(H) D R(H,) iff HyDH,, (3.7
(3) R(VH,) =Y R(H,), (3.9)
(4) R(QHa)zgR(Hd), (3.10)
(8) R(H,)' =R(BHY,). (3.11)

This theorem has an obvious translation in terms of the
algebras R(Ky, K,), In particular the duality relation
(3.11) becomes

R(K1, K2), :R(Kzl, K«‘L . (3. 12)

If 0 CIR? is an open set and L =D,((0)/S%(R*) where
D,(0) ={v<c C2(R*) | suppy is a compact set contained
in 0}, the algebra R(L), which we will denote also by
R(0), has the physical interpretation of the algebra of
the observables, which can be measured in the space—
time region 0. It is well known that

Theovem 3.2: Let () and (), be open sets in IR*, Then:
If () :090&, R(0D)=YR(0,) (field property), (3.13)

If 020, RO’ DOR(0;) (local commutativity),
(3.14)
U, A) R(Q) U(ar, A =R{(a, A) D) (covariance).
(3.15)

The algebras R((J)) have some other interesting proper-
ties when (J =C(B) where BCIR® is an open set and
CB)={xcR|(x-yP<0, yeS,n B (3.16)

If we put L =D,(C(B))/SARY, it easily follows from
(2.20), (2.24), and (2, 26) that L =F{" (B)& F{™(B),
where

U(m)

FB) =To DB} *vr . (3.17)
Equation (3. 3) then implies that

R(C(B)) =R(F{™ (B), wF{™ (B)). (3.18)
For any A CIR? and any E CIR%, we define

E@)= |

(@) OSZR(O)’ (3.19)
() oven
Fr(B)=_\_ F;r(B). (3. 20)
B open

We can now formulate the main theorem, Let 4 be the
family of the sets B CIR® such that:
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(a) B =U}4 B;, where n is a finite integer depending
on B and {B‘.}’},i is a family of mutually disjoint open
connected sets.

(o) B, =intB;, i=1,...,n, and B=intB.

(c) The boundary of B;, 8B;, is, fori=1,...,n, a
surface made up of a finite number of many-times dif-
ferentiable surfaces joined together along many-times
differentiable curves.

B is a complemented lattice with respect to the
operations:

ByABy=B, By,
B,V B,=intB, U By,
B*=DB°,

Define now by E the subset of 4 made up of the sets
B =U7%, B;, such that:

(3.21)

(d) If p is a singular point of 8B; (i=1,...,n), there
is a neighborhood U, of p and a vector A, such that

{xeR}|x=y+), ye U,NB;}CB,.
(e) 3B;N 3B, =P if i#j.

Observe that A is not closed with respect to the
operations (3.21), We have

Theovem 3.3:
(1) R(C(By)) A R(C(By)) =R(C (B, 1 B,)),

B, B, B{VBicj, (3.22)
(2) R(C(By))V R(C(B,)) =R(C(ByV By)),

By, By B, (3.23)
(3) RR') =R(C(IR®)) =A(7,) (completeness), (3.24)
(4) R(@B)={\1}, Be§, (3. 25)
(5) R(C(B)) =R(C(BY), B,B'cA. (3. 26)

By using Theorem 3.1 and Eq. (3,18), it is easy to see
that Theorem 3.3 is equivalent to the following one:

Theovem 3.4:
(1) FGTy (BYAFT(By) =F (" (By 1 By),

By, By, By Bi< B, (3.27)
(@) Fy(By)V Fyy(By) = F(By v By),

By, B,c f, (3.28)
(3) FMRY) =//5m) (3.29)
(4) Fim(aB)={o}, B<A, (3. 30)
(5) Fi™ (B): = wF ™ (B*), B*c A. (3.31)

Theorem 3.4 has been proven by Araki* for m > 0
many years ago, but his proof does not work for m =0,
because the spaces /. and /¢? are essentially differ-
ent from /™ and 4™, m > 0. In the next section we
will prove some properties of the spaces #/ and 4%,
that are relevant, in the case m =0, to the proof of
Theorem 3.4, which is postponed to Sec, 5.

We observe now that (3.22) and (3. 26) imply
RC®B)Y nRc®B)={\), B,B<j3, (3.32)
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that is, R{C(B)) is a factor, It is also possible to
show!® that R(C(B)) is of type I, The proof is essen-
tially based on algebraic arguments, but there are some
technical points (see Sec. 8 in Ref., 4) which require a
different approach in the cases m > 0 and m =0, The
result is true also for m =0, however we will not give
the details here.

4. THE ZERO MASS HILBERT SPACES # ‘:) AND # ©@

We recall that /" and /" were defined as the real
Hilbert spaces obtained by completing §,(R®) with re-
spect to the scalar products

(7,9, = [ d&|p|™ Fp) 3(p).

We want now to characterize /' and #{? as spaces of
distributions. ? In the following we will denote simply

by § the space of the real C” functions of rapid decrease
and by DC § the set of the functions of compact support;
moreover § will be sometimes considered as a linear
topological space with the topology given by the
seminorms

(4.1)

i olla,s= sup, [x*D* @), (4.2)
rER

§7 will be the dual of § and its topology will be the weak

topology.

If F and G are two topological spaces, the expression
F C 40t G will mean that F can be injected in G and that
the injection is continuous.

Definition 4.1: L% | is the real Hilbert space of the
measurable functlons Fp)= f f (- p) with scalar product

(7, 5.:= [ & |p|"F @20 (4.3)
Lemma 4, 2:

WS crLi,c 5, (4.4)

@ 5% =1} ,. (4.5)

Proof: Let f = L% and €> 0, There exists R> 0 such
that ||If - Zlly < /2, where Z(p) =Xp1/x,ra{IPDF(p) and
Xtq,53(A) denotes the characteristic function of [a,b].
Furthermore there exists @<= D such that suppd
C{pl(1/2R) <Ipl<2R} and [ &°p!3(p) - B(p) !* <(2R)"(e/2)%
Therefore, || #- @ll;<e/2 and |I7 - @lly<e which implies
(2) for L%, Analogously we can prove (2) for L%, Let us
now suppose that @,= §, and &,— ¢ in the topology of
S§. We have

iR sl b0l
+ Jipins |P|-t| §al®) - B(p)[*dp

<lsup| 3. - 5|1 [ 4&pip|?

»l
+sup|pl*2a0) - (P71, ., |p1° p
-0

analogously for |3, - @i, Therefore, § is injected
continuously in L% and L? by the identity application.
Let us finally show that Lf,.,, can be injected continuous-
ly in §’ by the natural injection

(@)= [dpf @ 3P, feli, FeS. (4.8)
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Iffc L%, we have
FRO@ <1715 S dplpl 150
< | 71% {lsupla®@|*1 [, _, Ipl &’p

+[sup|p|® |3(p)|?] Jigis1 1017 &P}

This shows that 7(7) € §’ and that the injection { is con-
tinuous. The same result is true for L%, .

Proposition 4. 3:
(1) 5 C (0) Cg 5/,

t
7/_/(0)

Proof: (1) immediately follows from the definition of
{9 and Lemma 4.2, if we 1ecall that the Fourier trans-
form is a continuous bijection® ®of S onto § and of §
onto §’ and if we define the injection of 4%, in §* by

i@ =TFNP), feHl:, ocs, 4.9)

where now f and @ are the Fourier transforms of f and
@—(2) follows from the fact that D is dense in § in the

topology of §, Sor T=HY, and § C oo AY%, which im-

plies D" < $o7, [

In the following we will identify fc 40 with i(f)e ",
Lemma 4,4: If
Fell 7 =xon(pDF®), 7@ =Xy« (p)7 P

we have

4.7

(2) Do* (4.8)

fieLP(lRa), sp< % “fﬂ“l’\cb“f\‘t’ <4'10)
herr@, i<p<2, |Rl,<cilifls. (4.11)
Moreover in (4.10) an (4 11) the value p =13 is
excluded.
Proof: By using H6lder’s inequality we have
1l =Uf, (B2 | 7a) ¥ o]/ aplt/»
[ Sprea Rl 21| 7 5, (4.12)
where 1/p=3+1/q. Since Cp=[J; 1 P!/ 2d®pP/e <

only if ¢ <6, (4.12) implies (4. 10). In order to show
that the value p=3 is excluded, we give a counter-
example. Let us congider the function f (p)

= lpl'zllnlpl] Xto,11(1P1). It is easy to see that

f—fic L% iff 20 > 1, but f; = L3/? iff 3a > 2; then, if
lca<i, foL? butf,eéL”2 The proof of (4.11) is
analogous ]

Lemwma 4,5: If = H1”, we can write
f=fith, fie LM@®)NC®), fr= LM®R),
4.13
(11>3: 2$q2<3’ ( )

and

Al =dg Il Al <dlrl.. 4.14)

Proof: Let f be the Fourier transform of f andf’m be
defined as in Lemma 4.4, By the Hausdorff—Young
inequality!!:

111l < @mprasras] 7],

<@n¥e, [ Fly=d, il
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where 1/¢; +1/p; =1; analogously for f,. Furthermore,
since f; has compact support, by the Paley—Wiener
theorem!! £, is an entire function, then f;c C*(R%).

Theorem 4.6: If ¢ = D the multiplication by ¢ is a
continuous operator of 4" in itself.

Pyoof: Let f€ A and fy, f, be defined as in Lemma
4.5. We have

lorll=llorls=@m 157
< @0 ([ G 7l + [ Fx 751

Furthermore, if we denote by w!/? the operator of
multiplication by |pl?/? and by [l -||, the L? norm, we
have:

@A,z llz = /2] 3% A2l 2
<f 215D+ |7l o
#1181 @2 A DI
[+7lz <l?@l: 0 Al +18 1 7l
s(Cq] 2|y + &1 | 7l
1@+ Zllz <l ?@ 5] 72 lla +1@ 140 7 s
<@l ?aly + 131011l

where we used the Young inequality!® and Lemma
4.4. Therefore, there exists a constant K,, depend-
ing only on ¢, such that liofll, s Kl FIl,. "

Let ¥w< D be a function such that ¥(X)=1 if Ix/<1
and 0 < (x) s 1; we put ¥, (x) = ¥(ex),

Theovem 4.7: Let fe A%, then

) (o, ¥ f)y —p (0, )y Vo< S5, {4.15)

@) wrll,<clrll,, c>0, oses1. (4.16)
Proof:1f fe ¥ and ¢= §, we have

(0,9, = [ x(X) F(x)d’%, X(p)=|p|&(p) 4.17)

i(pl is not a C” function; however it is easy to show that
D*Xe LY if | @l<2. This implies that

x*x(x)c L%, |a|<2, (4.18)

Then, if we define f; and f, as in Lemma 4.5, we have
| [x@®)fx x| < | [x@A Ex| + | ()|

<UL+ [ x [ BDxGM, 1+ (x| AN,
NN (4.19)

because (1+ 1x/?)-17,(x) and £,(x) belong to L?. By The-
orem 4.6 ¥, fc/f”, then we can apply (4. 19) to the
function ¥, f - f. Furthermore ¥, (x) f; »(x}=¢/1 2(X) point-
wise and 1%, (X) /1 2(X) - f; 2(X) | < |f; »(x}|; then (4.15)
follows from (4. 19) and the Lebesgue theorem.

In order to prove (4.16) we will use a trick analogous
to that used in the proof of Theorem (4. 6), but we will
make the decomposition of 7:

F=fie+F20 Fre® =Xl P D),

F2,6(®) =Xge, = [ P| (D). (4.20)
Obviously Lemma 4.4 is true also for this decomposi-
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tion; then we have
(@721, A, < s o cllet 1N,
<l w”z‘fallzﬂﬂ,s lly + IE Iyl 27y lly

+ Nt 2EIF g ol + 118, a2 7 ol (4.21)

On the other hand,
Wy oy < UFIFL fiome | DI dPp]2 = @) eliflly, (4.22)

Iy clly =l fiose|R|LF (D) |?] p] -t & pI'/ 2< €7 2IA,

(4.23)
w28 [l = %l 2114, (4.24)
llw /2@, ll, = el w2 |l (4.25)
1, 11y = INF]);. (4. 26)

Equations (4.21)—(4. 26) imply that (4. 16) is satisfied,
putting

C=@2m)2 2 @n! iw2¥l, + 21¥i, + w2 ¥, ]. .

Covollary 4.8: If feH™, fis the limit of ¥, f for
€~ 0 in the weak topology.

Pyoof: We have to prove that (g, ¥, f), = (g, /), for any
geH ), which is an easy consequence of (4.15) and
(4. 18), because ST =40, .

5. PROOF OF THEOREM 3.4 IN THE m = 0 CASE
The essential part of the proof is the following lemma:

Lemma 5.1: ¥ Bef (see Sec. 3 for the definition),

FOB) ={f cH | suppfC B}, (5.1)

Proof: Let us define 7,(B)={fe#{|suppfC B}. Equa-
tion (4.7) implies that 7 ,(B) is a closed subspace of
A9 and that F"(B)C 7.(B).

Corollary 4. 8 implies that the subset of 7,(B) made
up of the compact support functions, 7¢(B), is dense in
7+(B) in the weak topology; but 75(B) is a convex set,
then its weak closure and its norm closure coincide
(see Ref. 12, Theorem V. 3.13), that is, F3(B) is dense
in 7,(B). In order to prove (5. 1), that is 7(B)=7,(B),
it is then sufficient to show [see (3. 17)] that any f
€ 7¢(B) can be approximated by a function ¢ ¢ D
with suppg C B, as well as we want. Due to Theorem
4.8, if{a,¥, is a partition of the unity

N
a;e D, Zl)iai(x):l on suppf ,

we have
N
f:zl—)ifi with f‘l = aifE}::r(B).

Due to conditions (d) and (e) in the definition of 8 we
can choose{a,-} in such a way that there exists, for any
7, a vector b; such that suppf;(x — Ab;) C B for small
A>0. If we put f(X) =f;(x~ Ab;) we have: Iy ~ fill,

x=: 0. This implies that f can be approximated by a func-
tion g #$(B) with suppgC B. On the other hand, if J,(x)
=¢J(x/¢), where Je D, J(x)= 0, J(x)=0 for x| >1
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and [J(x)dPx=1, J,* g has support contained in B for €
small enough, Joxgc D and WJ, xg~ gl 240, Then (5.1)
is proven. "

Equation (3. 31) (the duality relation) easily follows
from Lemma 5. 1. In fact, if & < F{(B)*, we have

(@, 1)y = (2@, W *(w ), =0, ¥ ¢ D(B). (5.2)

If we put /= w'f, f is the Fourier transform of a func-
t;i)n f£ 1 such that suppf< B = B*, Therefore, if
ch

FOYBY = olf e 45| suppf < BY) = wFSO(BY). (5.3)
It is worth noticing that (5. 3) implies that, if B* ¢/

FP(B) = [wF"(BY] ={fe /| suppfC B}. (5.4)
We now prove two other lemmas,

Lemma 5, 2:

FOB)=FY (B)=FY(B), it Bej. (5. 5)
Moreover, if E is closed

FO(E)={fe /", |suppfc E}. (5. 6)

Proof: It is an immediate consequence of (3, 20),
(5.1), and (5. 4). a

Lemwma 5,3, ¥ By, Byc f

FO(B)A FO(B,) = F(BNB,), (5.7
FO(B)V FO(By) = FO(int (B, N By)). (5. 8)

Proof: By Egs. (5.1) and (3.20) F{"(B,)AF{"(B,)
=F"(B;n B;). The set By B, differs from the set
By N B, for a set of measure zero and the elements of
A are locally L* functions, by Lemma 4.5. Then Eq.
(5. 6) implies that F.% (B, N B,) =F." (B, ' B,)
=F%(B,N B,) and (5.7) is proven. To prove (5.8), it is
sufficient to show that, if ¢« D, suppe Cint(ByU B,)
and €> 0, there exist two functions f; and f;, such that
f1e FO(By), f, F¥(B,) and || fy +f, - ¢ || <e. Araki
has shown® that there exist f; and f;, such that
fre Fi"N(By) and f € F™(By), m> 0, and [Ify +£
- ¢llyem<e. However, if fe 4™, m>0, fe4'¥ and
Nrll, = |If“+l§,m)§ therefore the desired result is an im-
mediate consequence of Araki’s. u

Observe now that, by the duality relation (3. 31)

WPV (BYAFO By = FO(BY v FO (BY), 6.9
W[ FO BV F (B = FO (BY) A F(BY), (5. 10)

Equations (5.3),_(5.7), and (5. 9) immediately imply
that, if B, B, A

FQ(BYVFD (By) = F ) (int(B; UB,), (5.11)

If also BjVBje 3, Eqs, (5.3), (5.8), and (5,10) imply
that

FOBy)AFP (By) = FO (B N B,). (5.12)

Then Egs. (3.27) and (3, 28) are proven, Equation (3, 29)
is an easy consequence of (:1 8). Finally, by Lemma
5.2 and Eq. (3.27), if Bef,

FY (8B = FOB)A FO,(BY) = FO,(B)A F&,(B%) ={0}.
(5.13)
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The proof is now complete,

6. THE LOCAL ALGEBRAS FOR THE ELECTRO-
MAGNETIC FREE FIELD

As we saw in Sec. 2, there are many equivalent def-
initions of the one-particle Hilbert space for the free
scalar field, but the more suitable definition for the
study of the local algebras is the definition in terms of
the initial conditions of the classical solutions of the
Klein—Gordon equation, This is obviously true also for
the electromagnetic free field, provided we start from
the Maxwell equations:

8, F =0, €uvpg0yFpe =0, F,,=-F (6.1)

vuse
Equations (6,1) imply, as it is well known, the wave
equation

O0F,,=0 (6. 2)

but they are not completely contained in it, Therefore,
we cannot simply reduce the problems about the elec-
tromagnetic free field to problems about the scalar free
field of zero mass.

Sometimes the tensor F,, is expressed in terms of
the vector potential A, F,,=98,4,-9,4,, but this adds
some well known gauge invariance problems, 13 There-
fore, we choose to make all the construction in terms
of the physical quantity F,,. Let us now define the one-
particle Hilbert space H. The antisymmetric tensor
F,, can be expressed in terms of the six components

Ei:FOH Bi:%GOiuuF i=1,2,3 (6.3)

which satisfy the wave equation: 0QE; = 5B; =0, There-
fore, a solution of Eq. (6. 2) is uniquely determined if
we give the values at =0 of E;({,X), B;{{,X), E,({,x),
B, (¢, x), However the Egs. (6.1) allow us to express
E‘i(t, X) and B,{f,%) in terms of B,{¢,x) and E,(t,x) and
impose the conditions

0;E (1, %) =0,B;(f,x)=0.

[ 2274

(6. 4)

Therefore, a C* solution F,,(¢,X) of the Maxwell equa-
tions is uniquely determined by giving two C” diver-
gence free real fields on R3,

ei(x):Ei(O,x)’ bi(x):Bi(ny)’
3,e,(%)=29,0,(x)=0.

(6. 5)
(6. 6)

Let us now recall that the energy of the classical state
described by the function F (£, X) is given by

Mw

32 [ &*%(E0,%)7+B,(0,%)*]

4

i

—AMw -

o @plle @]+ |5, 1%, 6.7)

This implies that the average number of photons in the
corresponding coherent quantum state!? is

m:%zj;i I%HE@)&” |0, 0)|21.

This justifies the following definition:

1
=2

(6. 8)

Definition 6.1: Let ¢ be the space of the C” solutions
F,, of the Maxwell equations such that e, € D= D, (IR®),
b;e D, i=1,2,3; then the one-particle real Hilbert
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space of the electromagnetic free field, H, is the com-
pletion of G with respect to the scalar product,

(5, F) = zif‘p‘

Lemma 6, 2: Let K be the closure in H of the C* solu-
tion of the Maxwell equations such that e; € D, b,=0,
K can be identified with the real Hilbert space

S IR AT D A S e

(G ()8, +01*@b,@].  (6.9)

{(8.10)

where 4/ is the space defined in Sec. 2, f(X) denotes
a field of distributions on R? with components f,;(x),
i=1,2,3, and (,g), =55 (f: &), is the scalar product in
%/;e.m.).

Pyoof: Equations (4, 8), (6.6), and (6.9) imply that

K Coont ™, Then, to prove the lemma, it is suffi-
cient to show that, if gefiiem) and
Pp ~ o~
Ef‘,—p%mp)gi(p):o,v $:€D, 30,0,  (6.11)
i

then ¢=0. If we define ﬁi(p) = Ip]“E,(p) and we con-
sider the fields ¢ =V Xxa, a,€ D, Eq. (6,11) gives

hle;)=-(VXh);(a;)=0, ¥ a,cD; (6.12)

that is VXh=0, Thererore, there exists!® 3 distribu-
tion A such that z; =9;x. But 3;2; =0, then ax=0, which
implies A =0, L]

The space H can be identified with the space of the
couples {(¢;, by, ecH ™) beylem) Define now on H
the operator

Be,b) =(e’,b"),

. (6,13)
_t_ p x'é'

ipl '
It is easy to show that 3 is an antiunitary operator such
that B2=-1 and

"'r_____i_ B B —
e’ = ‘pleb, b

H=K® K, (6.14)

If we define if=p3f, f< H, H becomes a complex Hilbert
space and we can define the Segal field operator and the
canonical field and momentum as in Sec, 2. Moreover,
we can define R(L) and R(K, K,) as in Sec. 3 and The-
orem 3.1 is still valid,

Now let B R? be an open set which satisfies the
following conditions:

(a) Be f (see Sec. 3).

(b) If B= U ; B;, where {B,}}_, is defined as in the
definition of E B; is simply connected for i=1,,..,xn.

Condition (b) implies that the compact support second
cohomology for B is zero, which can be expressed in
the following less technical form:

(c) If @ is the field such that 9;¢;,=0, ¢, <D and
suppg,; C B, there exists a field a, such that a;c D,
suppa; c B and ¢ =V Xa,

This result easily follows from the de Rham duality
(see Theorem 17’ in Ref, 15).

If F,, is an element of H, such that e;=0 and b;€ D,
by (6. 6) and condition (¢) we can find a field a(x), such
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that b=V Xxa, a; € D, Equation (6, 13) then implies that
- 80, b ={(wPa, 0, (6.15)

where w is the operator of multiplication of the Fourier
transform by Ip| and

(Pa); = (o.-, Lj;ﬁ%) @,(0).

It is worth noticing that, in general, (Pa); & D.

(6.16)

Lemma 6,3: BK can be identified with the real Hilbert
Space,

Hemd =@ | fye 4", 200 8:(0) =0},
r:Z?i (fi’gi)ﬂ°

Proof: Equation (6, 15) implies that BK can be identi-
fied with the completion with respect to the scalar
product (£, g), =23, (f;,£;), of the fields Pa, a;< D, How-
ever, if fe//{*™) by (4, 8) there exists a sequence
a'™, such that a{” € D and lla;” - f,ll, = 0. Moreover
(6.16) implies that || Pa{™ - £, ||Pa‘"> Pfill,~0, then
feBK, .

Definition 6.4: Let Bc R’ be an open set satisfying
conditions (a), (b), Define:

F(a.m.)(B)__r(x Y@, e D, 8,¢;=0,suppy, < B}

6.17)
with scalar product (f,g)

H (e,m )
(6.18)

1 fe
Flem)(B) = {(Pa)(X)|a, < D, suppa, B} // +* )
Now let R(C(B)) be the Von Neumann algebra associated

by Eq. (3.1) to the subspace of H, 6. 19)
Ly=1{F,,€Hle,cD,b;c D, suppe; < B, suppb, c B}",
(6. 20)

By Egs. (6.15), (6,18), and (6.19), we have [see Eq,
(3.3)]

R(C(B))=R(F™(B), wF™(B)), (6. 21)

At this point our aim should be the proof of Theorem
3.3, which again is equivalent to Theorem 3.4, provid-
ed we substitute FJ™)(B) by Fﬁ,e";“')(B). However now the
task is more difficult than in the scalar case. In fact,
the analog of Lemma 5.1,

F&™)(B)={P t < ;™ |suppf; C B, (6. 22)
is not an easy consequence of Eq. (5.1) and the defini-
tion (6.19), moreover (6. 22) should not simply imply
the duality relation

F‘(:‘m'){B)J':wF;a'm')(Bl). (6. 23)

In fact it is easy to verify, using condition (¢), that
Fyem ) (BY = wif < /™| supp(v x1), < B} (6, 24)

The proof that the rhs of (6.23) and (6, 24) are equal can
be reduced to the following very reasonable ansatz:

Ansatz: If £ c/lm and supp(V xf),  B*, there is a
distribution A such that 8,x €4/ and V=1 in B,

Let us in fact suppose that this ansatz is true, Then,
if wf € F{*™* and we define g=f - V2, suppg;c B* and
Pg=f{, It follows, by (5.1), that there exists a sequence
{2} with a{” ¢ D suppa;™ c B* and [[a{" - g,l|

£ nao ,
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which implies || Pa;™ - £,||, == 0. The remaining part of
the proof of the analog of Theorem 3, 4 is now essen-
tially the same as in the scalar case, Then all the prob-
lem is the proof of the ansatz, which is equivalent by
(6. 23), to the following equation:

Flom)(By={f < // (=™ | suppf, < B}. (6. 25)

The previous argument also implies that Eq. (6.22)
should be true, Unfortunately we do not still have a
complete proof of the ansatz or Eq. (6. 25).
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Type N gravitational field with twist. II?
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A full derivation is given of that one parameter family of type N twisting gravitational fields which was
previously reported by the author. Explicit forms of this solution are obtained, and the coordinate ranges
are specified for all possible cases. The general problem of the search for other type N twisting
gravitational fields is also discussed; the differential equations required for that search are derived, and
the extension of these equations to type (3,1) is given without derivation.

1. INTRODUCTION

Let TNT denote any type N [i.e., type (4)] vacuum
solution of the Einstein field equations such that the
principal null rays are twisting.

The only presently known TNT is a one-parameter
family of metrics each of which has exactly one Killing
vector.! The derivation of this solution has not yet been
published, since the author’s first paper (I) on the sub-
ject was necessarily brief.! The main purpose of the
present paper is to fill this gap, both to disseminate
the possibly useful ideas involved in the derivation and
to furnish a basis for the discussion of the current
search for more TNT’s. A third paper (III) will cover
what little the author has been able to determine about
the geometry and physics of the known solution; some
interesting work along these lines has already been done
by Sommers and Walker.?

The TNT field equations used by the author differ
significantly from those used by others® and are given
in Sec. 2, together with a sketch of their derivation.

We do not follow the common practice of first construct-
ting a general formalism for all algebraically special
vacuums with diverging null rays and then abstracting
the TNT equations as a particular case. Therefore,

the author’s choice of a null tetrad is dictated only by
the requirement that the corresponding affine connection
forms have maximal simplicity for any TNT. The
choice of coordinates and of dependent variables are
prompted by what is already known from the completely
solved problem of type N with diverging null rays and
zero twist.? The other Petrov types play no role in
guiding our thinking, though it is conceivable that the
author’s treatment may be advantageously extended to
type (3, 1).

In Sec. 3, the particular case for which the author
has found a TNT is defined, and the derivation of the
solution is given. The results include specific forms
for the solution in terms of hypergeometric functions
and a clear-cut description of the range of the chart.
The unorthodox notations for coordinates in (I) are re-
placed by the notations of Robinson and Trautman®:®;
other notations are unchanged except for the use of A*
in place of A.

aResearch supported in part by the National Science Founda-
tion under Grant No, PHY75~08750,
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In the discussion of Sec. 4, we show that the number
of essential parameters in the solution is one, and we
describe some aspects of our search for new TNT’s.

Since a type (3, 1) solution with twisting null rays and
with a radiative term in the conform tensor has yet to
be discovered, ® there may be some interest in the ex-
tension of the TNT field equations of Sec. 2 to type
(3,1). This extension is given (without derivation) in
Sec. 4. Also, we point out the nonexistence of the sim-
plest imaginable type (3, 1) analog® of the author’s TNT.

2. THE TNT FIELDS EQUATIONS

First, we give a brief summary of our notations and
conventions respecting the Einstein field equations in
terms of differential forms and a null tetrad.

Consider any null tetrad” which consists of the 1-
forms k, m, ¢, * such that 2 and m are real, f* is the
complex conjugate of /, and their inner products have
values k-m={-{*=1. The symbol A is omitted from
exterior products of forms; e.g., #m means kA m and
dk means dA k. The exterior derivatives of the null
tetrad are given, for any spacetime, by

dk =3 {vy + vg*)k + vt + vt*, {1a)
dm = =5 (vg+vy*)m + vyt +v_Fl*, (1b)
dt = = vk —vym +5(vy - vy*)E, (1e)

where the connection forms vy, vy, v_; are defined by
v1:=dx BV ks, vy =AY XV g,
Vg =dx® (ﬂZBVakB + IfB*Va[B).

The vacuum field equations are given by

dvy +vyvg=Cokt + Cy(km + £*) + Comt*, (2a)
= zdvy + v =C 1kt + Cylkm + H*) + Cymt*, (2b)
vy +vgu g = Cpkel + C_y(km + %) + Cymit*, (2¢)

The scripts A and B on v, and on the conform tensor
components C,,5 are helicity scripts and have values
1, 0, -1,

As is customary, the null tetrad is chosen so that &
is a principal null form. Then, for type N,

Csn =0 except C,#0. (3)
Also, the Goldberg—Sachs theorem tells us that % is a

shear-free null geodesic, which means k-v;="¢-v,=0.
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Therefore, for nonzero expansion,
vy =z(A*k+1), z#0, (4)

where z: =#* vy and zA*: =m - v,. The real part of z is
the expansion and the imaginary part of 2z is the twist
of the null rays.

When making comparisons with I, note that the authov
Jormerly! used A to denote the complex conjugate of
the present A; the reason for the notational change can
be seen later by inspecting Eqs. (14) and (17¢).

We are now ready to consider the derivation of the
TNT field equations. The first phase of the derivation
is the selection of an appropriate null tetrad. The null
tetrad which we have so far is still arbitrary up to any
transformation which leaves k invariant except for
multiplication by a scalar field. The corresponding
transformation of the connection forms is given by

vl—-e’bvl,
Vo=~ Uy + 2)\1}1 + dll),

v~ e (v + Avg + Moy + d)), (5)

where  and A are any complex scalar fields. We now
take advantage of this group of transformations to
choose simple connection forms. With the aid of Egs.
(2a)—(2b), (4), and the complex version of the theorem
of Frobenius, we select a null tetrad so that

vy =dt, dLdg* #0,
(6)

va=hdg, v,=0.

¢ and h are complex scalar fields.

Though we have considerably narrowed our choice
of a null tetrad, there is a residual arbitrariness which
is given by that subgroup of the group of transforma-
tions (5) such that
1 dF(g)

g 2 (7)

b=F(), N=-5 Ty

where F(£) is an analytic function of {. There is no
obvious way of employing this remaining freedom of
choice to achieve a useful simplification of the general
TNT equations. Therefore, the group defined by Egs.
(5) and (7) is held in reserve to be used in particular
cases. For example, when a Killing vector exists, the
residual group can be used to select a null tetrad whose
members commute with the given Killing vector and
whose connection forms still satisfy equations of the
form (6).

That completes the first phase of the derivation. The
second phase is the choice of a coordinate system. Let

zl=p+iT, realpandT. (8)

p, £, &* will be three of the coordinates. The task is to
find a suitable fourth.

It is convenient to start by showing that %, dp, dg,
df* are linearly independent. Substitution from Egs.
(4), (6), and (8) into Eq. (1a) yields

dk =k0 = 2T dEdL*, 0:=Adl+A*dL*, (9)

662 J. Math. Phys., Vol. 19, No. 3, March 1978

From a comparison of the expression for dt in Eq. (lc)
with df as computed from Egs. (4) and (9),

At dt* k= k(dz=1)dE dt* = (zz¥)kmit*. (10)

Therefore, k, dp, df, dt* are linearly independent,
and the differential of any scalar field f is expressible
as

df =(dpX + kY + diD + dg*D*)f. (11)

The commutators of the directional derivations X, ¥,
D, D* are required for later computations. From Egs.
(9) and (11) and from @*f=0,

[X,Y]=[X,D]=0, [D,Y]=AY,
(12)
[D, D*1=2iTY,
The above Egs. (9)—(11) imply the existence of a
scalar field osuch that p, g &, &* is a chart, and
0
=35 (13a)
190
y_> 2
30 (13pb)
a a
D=—r-Q—
ok Jg ° (13¢)

p is a real and € is a complex scalar field. The domain
of the chart is an open connected set in which p #0.
Since the above defining equations for p, £, and o are
invariant under the transformation

p==p, Q_‘—Qy

o= —a,

we can always select o so that p > 0. It will be under-
stood that the positive p alternative holds from now on.

Equations (12) and (13) imply that p and  are inde-
pendent of p; i.e., both fields are constant along each
principal null geodesic. All other p-independent scalar
fields in our equations are expressible in terms of p
and € or their derivatives. In particular, from Egs.
(12) and (13),

A==-pp, (14)

A =p T = 5i(DQ* - D*Q), (15)
where

D:i=D-3,Q, 3,:=3/da (16)

All of the above Egs. (13)—({16) are for a fixed null
tetrad. For a fixed null tetrad, the coordinates may
sill be subject to any mapping of the form

p—~p, a-d{o,& &), 3,0 >0,

£~t+8&y Ey=const.

The general admissible coordinate transformation is
the direct product of the above mapping with the one
which is induced by the null tetrad change represented
by Egs. (5) and (7). The various scalar fields which
we have defined undergo the following corresponding
transformations:

£~¢’ such that d¢'=éF dg, (17a)
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2" =[expz(F+ F*)]z, (17b)

A e‘F(A—%Z—g), (17¢)
. 1{dF\* 1d4F

et [ 3(50) 14] (a7

p'=[expi(F+ F*)](3,0"), (17e)

A’ =[ exp(-F - F*)](3,0")4, (17t)

It is clear that the coordinate ¢ can always be chosen
s0 as to make either p=1 or A=zx1, and this can be
done without commitment to a particular member of

the admissible null tetrad family. However, it is
preferable to be guided in the choice of o as well as of
the null tetrad by auxiliary conditions of an invariantive
nature, like the requirements that a Killing vector exist
or that the twist be zero. For example, when the twist
is zero, Eq. {9) becomes dk =k6 which implies the
existence of ¢ and p such that k=pdo; thus, we are
automatically led to a choice of o for which £ =0, and
it remains to solve for p. Other examples are dis-
cussed in Sec. 4.

That completes the second phase. The final act is the
derivation of a viable form of the TNT field equations.
We start by substituting from Egs. (3), (4), and (6) into
Eqs. (1) and (2c). It is advisable to proceed by express-
ing all 1-forms in terms of the basis k, dp, d, d&*
and to write all differentials of scalar fields as in Eq.
(11).

Many of the scalar equations which derive from the
2-form components in Egs. (1) and (2¢) are redundant.
We skip further details and simply list the nonredun-
dant results which are obtained after judicious applica-
tions of Eqs. (12)—(186).

The final expressions for the null tetrad in terms of
the coordinate differentials are

E=pldo+Qds+Q*d %), (18a)
t=(p+iT)dL = A*E, (18b)
m=dp—zlpDD*+[))plk

— (DT = 2AT)dE + (DT < 2AT)*dL*, (18¢c)

Except for p itself, all of the scalar fields in the above
expvessions ave p-independent and ave to be computed
Srom p and Q¢ by using Egs. (13¢c)—(16).

After its choice is motivated by some invariantive
condition or by a criterion of simplicity, © is to be
regavded as a given function which is to be fed into the
equations. For each choice of Q, the field p is to be
found by solving the pair of equations

D* = ~hp, (19)
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[(DD* + D*D)A + 2(DA)* + D*A[))

+a(00*+0%))p =0, (20
where % is subject to the constraint
D*h=0. (21)

In Eq. (20), A is to be treated as an operator; e.g.,
[(DD*+ D*D)A]p means (DD* + D*D)(Ap). The complex
scalar field % is defired by Eqgs. (6). It also appears in
the Riemann tensor as follows:

C o = ¥ O R gy = 2N,

N=p"13:h. (22)

The above TNT field equations (19)—(21) were de-
rived subject only to the agsumption that the null rays
are diverging; i.e., they cover zero twist as a special
case. If the twist is zero, Eq. (20) vanishes identically;
o can be chosen so that D=123/2¢, Eq. (21) implies that
h= hlo, £), and Eq. (19) has a solution for any given
choice of hlo, £). Thus, inthe zero twist case, any
member % of the null space of D* admits solutions.

In contrast, when there is twist, not every member %
of the null space of D* necessarily admits a solution of
p of both Eqs. (19) and (20). The process of solving
Egs. (19)—(21) must include the calculation of those #
which admit a solution. For example, in the solution
found by the author, % is uniquely determined by the
choice of @ =iA,{(Z + £*) where Aj=real nonzero
constant.

The author regards Egs. (19) and (20) as a paiv of
linear equations in p fov which h plays a vole voughly
analogous to an eigenvalue. h is to be determined by
analyzing the successive integrability conditions for
Eqs. (19) and (20}, as computed with the aid of the
relations

(D, D*]=2ia3,, (23a)

aD=03,. (23p)

Incidentally, it is interesting to note that Egs. (19),
(20), and (21) are not completely independent of each
other for any given @ corresponding to a nonzero A.
Specifically, we now prove that Egs. (19) and (21) impiv
that the left side of Eq (20) is independent of o, i.c.,
depends at most on ¢ and £*. The proof proceeds by
introducing a field ¢ such that

p= 804)- (24)
Use of Egs. (23) then shows that Eq. (20) is equivalent
to the equation

(D*D** _ D¥ D% ¢ = 0. (25)

However, from Egs. (19) and (21), and Eq. (23b),
(D** - D*¥)¥p = 3,(D*D* - D*2DY ¢ — 0, (26)
So, the theorem is proven.

It is time to give the derivation of the only presently
known twisting solution® of Eqs. (19)—(21). We will de-
signate this solulion as TNT,.
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3. DERIVATION OF TNT,

A “sophisticated” characterization of TNT; will be
given in Sec. 4. At present, let us be satisfied with a
mere criterion of simplicity and consider any TNT
which admits a choice of null tetrad and coordinates
such that

Q :l.AO(é' +£*),
Then, from Eq. (15),
A=4,,

Ag=real const?0. @7

Consider the continuous group of null tetrad-coordinate
transformations (including translations of £ and o) which
are represented by Eqs. (17). Tke subgroup which
leaves A constant and which retains the above form of

2 is given by

g'=ef(E+ & +iny), F=a+ip,

P’ =exp(~ a)p,

o' =A%(0+0p) — A (1 + exp(2iB)) £, - (1 = exp(24B))in,]
+3248[1 - exp(2¢8)]c +c.c. (28)

Above, «, B, v, 0y, &, N, are real parameters such that
¥>0. An important part of the derivation of TNT; is
to use Eqs. (28) to select our null tetrad and coordi-
nates so as to obtain a simple expression for k.

With our choice of 2, the TNT field Egs. (19) and
(20) reduce to

D =<hp, [)=D, (29)

(DD* + D*D)p =0. (30)
Equation (21) has the general solution

h=hlo-iK, ) k=38,(¢+ 5% (31)

Now we solve Egs. (29) and (30) in three phases. The
first phase is to use the commutators of Egs. (23) to
obtain successive integrability conditions for the field
equations.

By operating on Egs. (30) with D* and using Eq. (29),
we obtain the first integrability condition

(* D+ 3i8g3,D%)p = 0. (32)

Operation on Eq. (32) with D and the use of Eq. (30)
yields a second integrability condition

(34,29, + hir¥)p =0. (33)

Operation on Eq. (32) with D* and the use of Egs. (29)
and (30) yields

[(Dn)*D = 4iBhi* 3, ~ 3iA 3% Jp = 0. (34)
Operate on Eq. (34) with D, and use Eq. (32) to get
[i84(8,h*)D + 4 hi* D* + n(DR)*]p = 0. (35)

Operate on Eq. (35) with D, and use Egs. (29), (30), (34),
and the complex conjugate of Eq. (34), and we finally
obtain a condition on % alone:

[(DRY(DRY* + 418y (hdh* = k3,1 }p = 0. (36)
Our round of integrability conditions is now completed.

The second phase is the determination of #(c—-ix, £).
Equations (34) and (35) and their complex conjugates

664 J. Math. Phys., Vol. 19, No. 3, March 1978

form a system of four homogeneous linear equations

in Dp, D*p,id0.p, and p. For a nontrivial solution to
exist, the 4X4 determinant formed from the coefficients
in these equations must vanish. With the aid of Eq. (36),
this condition reduces to the following neat and not so
obvious form:

| (DR y*(i83,n7Y) - DR 2 =0.

Therefore,
1803,k =4 exp(ib), (37a)
. Dpt
exp(ib) = D% (37b)

where & is a real scalar field. From Eq. (21), D*i??
=0. So, since 9,D=D3d, in our particular case, D*b
=Db=0 and (DD* - D*¥D)=2iA;9,b=0. Hence b is a
constant.

The constant b can be made zero by an appropriate
choice of the null tetrad and coordinate system, as can
be proven by using that transformation in Egs. (28) for
which e =y=0y=£,=17,=0 and 8 =3b. Integration of
Eq. (37a) then gives us

bt =(4/3i0 )0 - ik +g(L)],

where g(¢) remains to be determined. From Eq. (37b),
Dh™! is real; this condition yields g(£) =a,+iay +iay¢
where @, 41, @, are real constants. We then use that
transformation in Eqs. (28) for which a=B=y=1,=0
and & =- a,/44, while o,=a,. The new k™ is as before
except that g(¢) =ia, where a; is a real constant. Sub-
stitution of this latest 2! into Eq. (35) shows that ¢, =0,
and we have

ht =(4/3i0) (0 - iK), K=38,(L+ %), (38)
That completes the calculation of A.

The final phase consists of substituting the above
expression for 27 into Eqgs. (33) and (34), solving these
equations for p, and then verifying that the solution also
satisfies the TNT field equations (29) and (30). To pro-
ceed, introduce real coordinates £ and 7 in place of the
complex coordinates £ and {* as follows:

E+in:=V2¢. (39)

This facilitates the breaking up of Eq. (34) into its real
and imaginary parts, which are readily solved together
with Eq. (33). When making comparisons with I, please
note that the authoy’s old notations (u, &, p, o) for the
real coovdinale have now been veplaced by the
Robinson—Trautman notations (p, o, &, 7).

The solution for p was originally obtained in a simple
form which excludes points at which £=0 from the do-
main, It is easiest first to give this form and then to
detail the circumstances under which p can be extended
across the hypersurface £=0. The solution which is
applicable to the separate regions £>0 and £<0 is

P(O'; g) :(52)3 /4f(y)>

y:=o/(a8), (40)
f(y) is any solution of the equation
d’y 3
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subject only to the following constraints on the physical
domain of p:

(1) the domain of p is open and connected, and p >0
at all (o, £) in this domain;

(2) p is at least C™ in the domain.

To avoid any ambiguities now or later, the positive
root of (£2)*/* in Eq. (40) is to be understood, and the
same convention is adopted for all roots of positive
numbers which occur in subsequent expressions.

f is expressible in terms of hypergeometric func-
tions.® The even and odd solutions of Eq. (41) are given
for |yl < 1by

fO(y)‘:ZFl(" %y "% ’%’ ___yZ),

fl(‘)) :yZFl(%yéy %, _yZ).
An alternative fundamental pair of solutions F,,, and
Fy,, are given for Iyl > 1by®

F1/4 = (yz)l/SZFl(— %7 %) —Z'y - 1/3)2),
Fy= 0" %F (=3, 5,3, - /7). (43)
The relations between these two pairs of solutions are

Jo=B1F1 )4+ ByF'y 4,

(42)

=0/ 19 INByFy 4 + BeFy ), (44)
where

By =TI (-1)/T(-}r(3)=1.5832...,

By =T (3)I'(-1)/TEITE@ =-0.8123. ..,

BBy =v2+1, B,B,=VZ-1, (45)

The general solution for f will be expressed in the alter-
native forms

f=afy+bfi=aF; 4+ BFy,,

which are respectively useful for discussing the metric
in the regions |yl <1 and |ly!| = 1. The coefficients «, 8
depends on the sign of v as well as on @, b; from Eqgs.
(44) and (45),

(46)

a=B,a+(sgny)B,b, B=Ba+ (sgny)B,b. (47)
The first fundamental form
8ays 0X% 62 = 2(kop 63 ) (mg 6:°) + 2|, 657 |

can be constructed from the following TNT; expressions
for the null tetrad as computed with the aid of Eqs. (18),
(14), (27), and (40):

k=p(do-24,Edn), (48a)

m=dp+ JAPp(AdL ~A*dL*), (48b)

t=(p+iAp)dt - A*k, (48c)
Bt 13

A=V2¢ l:(“+z)fdv_4:|' (48d)

It is obvious that TNT; has a Killing vector K such that
K%d, =3/87. This was an extra bonus which the author
did not expect. It is the only Killing vector, since
Collinson®® has proven that any TNT cannot have more
than one Killing vector. 1

Note that the first fundamental form is invariant in
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value under the coovdinale transformation
£- - 4§,
However, (his does not imply an tnvevsion symmetvy
of TNT,, because, if p(o, &) is given for positive &,

then p(0, — £) need not represent the continuation (if any)
of p into the region of negative £.

p—-p, o-g, M=

We next discuss the range of the chart and the cir-
cumstances under which p has an extension across the
hypersurface £=0 (g#0) if it is given in the region £>0.
In all cases,

_oo<p<oo’ _oo<7]<oo_

So, the only problem is to find the set of (o, £) or, equi-
valently, the set of (v, £) which correspond to a given
choice of f. There are three distinct cases.

(I) First, suppose f has two zeros y; and y, ™ v{ such
that f(v) > 0 in the interval y, <y < v,. Then theve is no
extension of the chart, and its range is given by

V<Y <y, £ 0.

An example is f=f;, for whichy;=~5.5 and v,=5.5.

(I1) Suppose f has a zero at y =y, and is positive in
the open interval (v4, ). Then theve is an analytic con-
tinuation of p acoss the hvpersurface £E=0 (0#0) into
the region of negative &. 2 Phe extension is uniquely de-
termined by the C! matching conditions at £=0 (o#0).
With the aid of Egs. (43) to (47), the result of the match-
ing procedure is given by

B.=- 8,
a.=-v2 a- ByByb,

. =da,

b.=BBya+V2 b, (49)
where

fo=afy+bfi=a Fy,+B.Fy,,

plo, &) =(E)*/*r(v) for £<O. (50)

Let y,. be the maximum zero of f.. (There may be only
one zero.) Then the range of the chart is given by

¥ >uy for £ 0,

v >y, for £<0,

As an example, consider f=-f; restricted to the domain
(5.5, «); in this example, v,_*-1.2,

(I11) Suppose f has a zero at v =1 and is positive in
the open interval (-, y;). Then there is an analytic con-
tinuation of p across the hypersurface {= 0 (o#0) into
the region of negative &. 2 The same equations hold as
in the preceding case except that B;B, and BB, are to
be replaced by their negatives in Eqs. (49), and the
range of the chart is

for £ =0,
for £< 0,

V<
V<.

where v, _ is the smallest zero of /.. An example is
f=-—f, restricted to the domain (- «, ~ 5.5); in this
example, v;_=1.2.

For some purposes, it is advantageous to introduce
a positive parameter »y and a real parameter u by the
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equations®

NnyCOSM:=a, nysink:=>b, (51)

These parameters are used in the discussion.
4. DISCUSSION

A. Number of parameters in TNT,

As can be verified by examining the derivation of &
which followed Eqs. (28), the remaining arbitrariness
in our choice of a null tetrad and coordinates is given
by that subgroup of Egs. (28) for which all parameters
are identically zero except a, v, 1, and except for the
possibility B =7, Also, there is the total inversion
k— -k, m—~m, t—~t which we have not had to con-
sider until now.

The key transformations which are induced by the
residual group are as follows:

p’ =exp(- alp, o =+v0,

g =expla+iB)t, n'=expla+iB)n+ny), (B=0,m),
p'=expla)yp, A]=xexp(~2a)ra,,

ng=exp(- /2y, ¥y =y, w'=p. (52)

ng and {4 are the metrical parameters in Eq. (51). expa
and y are arbitrary positive scaling factors [where this
a is not to be confused with the o which occurs in Egs.
(46) and (47)].

It is clear that expa and ¥ can be selected at will to
make both ny=1 and 4;=1. Therefore, TNT; has only
one essential parameter, 1 yiz. , the parameter 1 which
remains invariant under the residual group.

B. Another approach to TNT,

In Sec. 3, we defined TNT,; by the condition that there
exist a null tetrad k, m, ¢, i* consistent with Eqs. (6)
and a coordinate system p, 0, §, £* consistent with Egs.
(13) such that Eq. (27) is true. An alternative defini-
tion is expressed by the condition that there exists a
null tetrad k, m, ¢, * such that Egs. (6) hold and such
that

kO =Pkdy, (53)
where!®
dx = - dT/T (54)

and where ¢ is the 1-form defined by Eq. (9).

We now sketch a proof of the equivalence of the two
definitions. Since both definitions admit only those null
tetrads which satisfy Eqs. (8), we will grant Egs. (6)
throughout the proof. First, assume that Eqs. (53) and

(54) are true. Let
pr=exp(-x), A:=pit. (55)

Note that Eq. (55) is equivalent to the statement that
A is a uniform field. Furthermore, from Eq. (9), we
see that Eq. (54) is equivalent to the condition

d(p~tr) = - 25AdE dE*. (56)

Since A is uniform, it follows that there exists a scalar
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field ¢ such that
do=p=k — i A(L + £*)(dE — db*). (57)

Equation (57) is equivalent to Eqs. (13) with Q =7A(¢
+&*). So, we have proven that Eqs. (53) and (54) imply
the existence of a null tetrad &, m, f, * and a coordi-
nate system p, o, £, {* such that (13) and (27) hold. The
converse presents no problem and is proven by showing
that Eqs. (13) and (27) imply Eq. (57), which then im-
plies Eq. (56), which is equivalent to Eqs. (53) and
(54).

C. Search for more TNT

There are two possibly feasible approaches to the
hunt for more TNT. One is an extension of the methods
used in this paper. It starts with the assumption that x
exists such that Eq. (53) holds, '® but we no longer as-
sume that the scalar field x is given by Eq. (53). As
before, scalar fields p and A are defined by Egs. (55),
whereupon Eq. (56) is still true. A is not necessarily
a constant in this generalization, but Eq, (56) does im-
ply that A is expressible as a function of ¢ and {* alone;
moreover, Eq. (56) implies that there exist scalar
fields ©(¢&, £*) and ¢ such that

k=pldo+Qdf +Q*dg*),
which implies that Eqs. (13) hold.

In other words, we are considering the class of TNT
for which there exist a null tetrad %, m, {, {* consistent
with Egs. (6) and a coordinate system p, o, ¢, {* con-
sistent with Egs. (13) such that  depends on ¢ and £*
alone. Fred Ernst and the author have already worked
out the complete set of field equations and integrability
conditions which are appropriate generalizations of
Egs. (29)—(36). The integrability conditions are im-
mensely difficult to handle except for the special case
of TNT;. However, we have not yet subjected these
conditions to a thorough examination.

The second approach which we have in mind leads to
TNT spacetimes which are not necessarily in the cate-
gory covered by Eq. (53). Specifically, we assume that
a Killing vector K exists. Then, we can always special-
ize the null tetrad and the coordinates defined by Egs.
(6) and (13) so that K*d, = 3/21. The differential equa-
tions for p and /. then involve only the two coordinates
¢ and §.

Even then, the problem is tough. However, it is pos-
sible that a combination of the assumption that a Killing
vector exists taken together with some ansatz concern-
ing @ may lead to less resistant equations. The author
is working on that possibility.

D. Some comments on type (3,1) with twist

Finally, we give the extension of our TNT equations
to type (3, 1) {also called type III). For type (3, 1), as
well as for type N, all of Egs. (7)=~ (20) still hold. The
only one of Egs. (6) which are changed is the expres-
sion for v, which now becomes

vy=hdf+zLk (58)

where L is a scalar field which does not depend on p.
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As regards Eq. (21), it is replaced by the pair of
equations

D*h=-L, D*L=2A%L, (59)
As regards the conform tensor,

Ci=2"L, C,=2zN-z"DL +2iz3L(DT - A7), (60)
That is all.

Wild and the author® have examined the question as to
whether there exists a type (3, 1) twisting gravitational
field such that Q is given by Eq. (27) and such that 1
is an ignorable coordinate. The answer is negative;
i.e., the spacetime is type N if Q is given by Eq. (27)
and if a Killing vector K exists such that K*d, = 3/37.

On the other hand, there may exist type (3, 1) twist-
ing gravitational fields such that N#0, 7 is an ignorable
coordinate, and there exists a scalar field x such that
Eq. (53) is true. This is an interesting possibility. [@
is not given by Eq. (27) in this case. ]
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Birkhoff’s theorem and magnetic monopole solutions for a
system of generalized Einstein-Maxwell field equations
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In this note I establish a “BirkhofPs type theorem” for the most general second-order vector-tensor
theory of gravitation and electromagnetism, which is such that its field equations are (i) derivable from a
variational principle, (ii) consistent with the notion of conservation of charge, (iii) compatible with
Maxwell’s equations in a flat space, and (iv) in agreement with Einstein’s equations in the absence of
electromagnetic fields. I also present solutions to these field equations which can be regarded as
representing the gravitational and electromagnetic field outside of a magnetic monopole. It turns out that
these magnetic monopole solutions admit event horizons when the mass of the source is sufficiently large.

1. INTRODUCTION

The results presented in Ref, 1 demonstrate that the
Einstein—Maxwell field theory is nof unique amongst all
possible second-order vector—tensor field theories of
gravitation and electromagnetism which satisfy the
following four conditions.

(i) There exists a Lagrange scalar density L of the
form®

L= L(gab;gab.il; °es ;gab.i1°'°ia; Zrba; d)a,ﬂ; eeey Zpa,iiﬂooiﬂ)
(o= 2, B= 1), which is such that in the absence of

sources the field equations are given by® E¥(L)=0 and
EY(L)y=0.

(ii) In the presence of sources the field equations as-
sume the form EY (L) =8nv=g T and E}(L)=16mV=gJ*,
where T!/ and J ! denote the energy—momentum tensor
and charge current vector of the sources,

(iii) E*(L),;=0, in general, and E¥(L)=4V-gF
when evaluated for a flat metric tensor.?

(iv) I electromagnetic fields are not present, then
the field equations E*/(L) =8r/=gT¥ reduce to
Einstein’s equations; viz,, G =8sT%.

In fact the field equations of any second-order vec-
tor—tensor field theory of gravitation and electromag-
netism satisfying the above four conditions may be ex-
pressed as follows®:

G =8r(TH + kA + 8n TY (1.1)
and
FY. + 3kF,,  *R¥4% =4nJ*, 1.2)

where % is an arbitrary constant with units of (length)?,

TH:= %r (Fiepd, ~ 1 gV F F) 1.3)
and
A = (B By TR s O (1.4)

When the constant # appearing in Egs. (1.1) and (1. 2)
is equated to zero, these equations reduce to the usual
Einstein—Maxwell field equations. Due to this observa-
tion we shall refer to Eqs, (1,1) and (1.2) as the
genevalized Einstein— Maxwell field equations,
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In Ref. 6 static, spherically symmetric, pure elec-
tric, source-free solutions to Egs. (1.1) and (1.2) were
presented. The purpose of this paper is to examine the
spherically symmetric source-free solutions to Eqgs.
(1.1) and (1. 2) without assuming the spacetime under
consideration to be either static or pure electric, Our
primary objective is to prove that under certain condi-
tions any spherically symmetric source~free solution
to the generalized Einstein—Maxwell field equations
must be static, and hence these field equations satisfy a
theorem similar to Birkhoff’s theorem.” It turns out
that these “certain conditions” are quite reasonable
when one is concerned with asymptotically flat solutions
to Eqs. (1,1) and (1. 2). Consequently, we can safely
say that the generalized Einstein—Maxwell field equa-
tions do not admit gravitational or electromagnetic
monopole radiation fields. However, as we shall see,
they do admit magnetic monopole and “Bertotti—Robin-
son type” solutions, ° In addition these magnetic
monopole solutions bear a strong resemblance to the
(pure magnetic) Reissner—Nordstrom solution, and,
like the Reissner—Nordstrom solution, they possess
event horizons when the mass of the source is suffi-
ciently large.

We shall now turn our attention to the Birkhoff’s
theorem satisfied by the generalized Einstein—Maxwell
field equations.

2. APRELIMINARY VERSION OF BIRKHOFF'S
THEOREM

A spacetime containing an electromagnetic field will
be said to be spherically symmelvic if it admits the Lie
group SO(3) as an effective Lie transformation group of
isometries. We also require that:

(i) the orbits of SO(3) be diffeomorphic to the 2-
sphere S%;

(ii) the restriction of the metric tensor to each orbit
be positive definite; and

(iii) the electromagnetic field tensor be invariant
under the action of SO(3).

Under these assumptions it can be shown that locally
it is always possible to introduce a chart w ;= (/,7, 8, )
with connected domain U which is such that on U the
line element, ds®, and electromagnetic field tensor, F,
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have the following form®®

ds?=-e**di? + e @yt + X*(d6* + sin’6 do?) @.1)

and

F=EdtAndr+Dbsindden do, 2.2)

where a, 8, X, and E are functions of » and  and be R.
In Egs. (2.1) and (2. 2) 6 and ¢ have the same range as
do the usual spherical polar coordinates on S2, We

shall refer to the chart w with the above properties as

a standavd chart for a spherically symmetric space-
time containing an electromagnetic field,

Throughout the remainder of this paper we shall con-
fine our attention to a spherically symmetric space-
time containing an electromagnetic field and satisfying
the source-free generalized Einstein—Maxwell field
equations. Let w:=(¢,7, 6, ¢) be a standard chart for
such a spacetime with domain U, In order to establish
a “Birkhoff’s type theorem” for the generalized
Einstein—Maxwell field equations there are various
cases for us to consider depending upon the behavior
of the “hypersurfaces” {X =const}, where
X%:=g(3/20,3/20). In this paper we shall not treat the
case in which the normal vector to these hypersurfaces
is null on a set of measure zero. However, in the next
section we will examine the case in which X equals a
constant on U, This case leads to Bertotti—Robinson
type solutions to Eqs, (1.1) and (1, 2). For the purposes
of the present section we shall only be concerned with
the case in which the normal vector to the hypersur-
faces {X:const} are either spacelike at each point of
U, or timelike at each point of U, or null at each point
of U, To begin with, we will show that the hypersur-
faces {X = const} cannot be null at each point of U,

When working on the domain U of a standard chart w
which is such that dX+#0 at a single point of U, then it
can be shown that the only functionally independent
source-free field equations of the system (1,1), (1.2)
are
6-23[_ (X-IX/)Z _

+e 29 (X~1X)? + 2X X ]
:E2€-2ae-26+ bZX--i +2kb2e-2BX-5[_Xu +Xxrg

ZX-lX// + zx-iX/Br] +X~2

+XBe 200 ~ pE%e % X1 = (X')e
+ (X)%e %] + ke28X 4607 (X-1X")? — 2E%(XX)2et¥],
(2.3)
e XX - X' - Xa')
=kbe- X5 (X! - X'3 - Xa')
+ ke-Zae-st-GXX'(EZQ-ZaXAl - 3b2e25), @. 4)
6-28[ (X‘IX’)Z + 2X'1X'ar’] -~ X2
+ e 22X "X - 2X-1X - (X-1X)2]
== E2e2%p-8 _ p2x-4 4 pE2e-22p28X-21 _ (X/)2p 28

+ (X.')Ze‘z“] +2kb%e X[~ X + X & +X'a’'elg18)
+ ke 2oX-gb2(X"1X)? - 2E2(XX")2e"44], (2. 5)
—E'+E(0"+p") - 2EX X + kXY E' — E(a’ + B')]

X[1 - (X')2e 2 + (X)%e-2°] + 2REX 2X e
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X(X' - X'p-Xa")
+ 2REX-2X'e (- X" + X'

+ Xge 2% =0, (2. 6)

and
E - E(& +f) + 2EX"1X - kXY[E -~ E(& + §))

X[1 - (X')2e78 + (X)2e"2%] + 2REX2X'e (X - X'B - X a’)
2.7)

where the dot and the prime denote partial differentia-
tion with respect to £ and » respectively. !! Equations
(2.3)—(2.7) represent the following equations of the
system (1.1), (1. 2):

- GY==8173, 3GY=4773, Gl=8rT1,
Zaezﬁ(l;{)};j+%kac;a*R*Oabc):o

+2REXXe (- X +X& + X' a'e?%e ) = 0,

and

e (FY,  + 4k F,y,,  *R¥la%) =0

respectively, where 7’, = T* + /’A’ The only other non-
trivial equations of the system (1. 1), (1, 2) are 62
=877% and G}= 8773, where G} =G} and 7: =7} How-
ever, under our present assumptions, these equations
are automatically satisfied whenever Egs. (2,3)—(2.7)
hold. This is so since Gi;=0and 7%,=0 (in general)
when the source-free version of equation (1.2) is
satisfied.

Now suppose that wo= (? 7,0, ¢) is a standard chart
with domain U which is such that the hypersurfaces_
X= const} are null, and dX#0 at a single point of T,
where X* :=¢(3/96, 3/36). Then it is easily seen that
given any point P< U there exists a standard chart
w:i=(t,7, 8, ¢) at P with domain U c ¥ which is such that
on U

ds?=e?*(= dt® +dr®) + (1 + 7)}(d6% + sin®0 d¢?),
while F has the form presented in Eq, (2, 2) with & and

E being functions of » and £, Upon subtracting Eq, (2. 5)
from (2,3) we find that on U

1=Ee ot + 7Y~ k] + 02/ (t +7)?, (2.8)
while Eq, (2, 6) tells us that
(E' - 20’E)[- 1+R/(t+ )= 2E/(t +7) =0, 2.9)

When Eq. (2.8) is differentiated with respect to 7, we
discover that Eq. (2.9) can be used to rewrite the re-
sultant equation as follows:

0=(Ee* +8%/(t + r)4,

and hence E=0=0, However, this fact is incompatible
with Eq. (2. 8) and thus our original assumption that the
hypersurfaces {X = const} are null must be incorrect.

We shall now examine the case in which all of the
hypersurfaces {X =const} are timelike, In this case it
can be shown that given any point < U there exists a
standard chart w:=(,7, 6, ¢) at P with domain Uc U
which is such that on U

dst=—e**dft +e®Bdrt + Y*(d 6 + sin®0 d¢p?) (2.10)
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while F has the form presented in Eq, (2.2) with «, B,
and E being functions of 7 and ¢/, For this form of line
element equations (2, 3), (2.4), and (2.5) imply that

25' 1 eZB E2€-2a .
T rt s T k)
b2
+ 76(~r2e2ﬂ+ A3 + 6k, (2.11)
B8=0 (2.12)
and
’ 28 2,2
%ﬁi + 1,12 87‘ —- B 4 k(3ert- 1))
b2
3 (2kc’ - ve®®), (2.13)

Upon differentiating Eq. (2. 11) with respect to , and
noting Eq. (2.12), we find that

AE%)

— (324 p(e-2b_
0=[r?+ k- 1] ==

(2.14)

Now suppose that there exists a point @ = U which is
such that 2(E?¢?*)/31# 0 at Q. Then Eq. (2. 14) would
imply that #* + k(e"** = 1) =0 on a neighborhood V of @
and hence e"**=1-+2/k on V. However, this expres-
sion for e % does not satisfy Eq. (2.11), and thus we
may conclude that

a(EZe-za) B
Y =0 (2.15)

on U,

If we now differentiate Eq. (2.13) with respect to /,
we see that we can use Eq. (2.15) to deduce that &’ =0
and hence

a=A(r)+B(l), 2. 16)

where A and B are differentiable functions of » and /
respectively.

Due to Eqs. (2.15) and (2. 16) we see that there must
exist a differentiable function £ =£(») on U which is
such that

E=EePD, (2.17)

Equations (2, 2), (2.10), (2.16), and (2. 17) suggest
that we define a new time coordinate T on U by means
of the equation d7 =e® dt. In terms of the chart
(T, 7,0, ) with domain U we have

ds? = - 24 dT? + & dy? + ¥4 (a0 + sin®0 d¢?)
and
F=£(dTrndr+bsinfdiAnde,

where A, 3, and £ are functions only of ». As a result
of this observation we can conclude that our spacetime
must be static on U.

Employing an argument similar to the one presented
above, we can show that if the hypersurfaces {X = const}
are all spacelike in 17, then given any point P U there
exists a standard chart (, R, 8, ¢) at P with domain U
« U which is such that on U

ds?t = — &*® di? + ¥ dR? + ££(d6* + sin®0 do?)
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and
F=e€cdtNdR+bsinBd6Ad¢
where @, B, and ¢ are functions only of ¢,

To recapitulate the above work, we have the following
preliminary version of Birkhoff’s theorem for the gen-
eralized Einstein—~Maxwell field equations,

Theovem 1: Let (M, ¢,F) be a spherically symmetric
spacetime containing an electromagnetic field and let
w:=({,70,) be a standard chart with domain U,
Suppose in addition that

(i) g and F satisfy the generalized Einstein—Maxwell
field equations without sources; and

(ii) the function X? :=g(3/26,3/30) has no critical
points in U,

Then the gradient of X cannot be a null vector field
on U,

If the hypersurfaces {X = const} are timelike (resp.
spacelike), then, given any point P& U, there exists _
a standard chart w:=(l, 7,8, $) at P with domain UC U
which is such that on U

dst == &*® di* + & dr* + X*(d6? + sinb do?)
and
F=Edirdy+bsinfddndo, (2. 19)

where @, 3, and E are functions only of v (resp. 1), and
X* =22 (resp. *).

(2.18)

When seeking spherically symmetric, asymptotically
flat solutions to the generalized Einstein—Maxwell field
equations, one requires that the surfaces [X= const}
must be timelike hypersurfaces in the asymptotic
domain. Thus due to the above theorem we see that in
the asymptotic domain any sphevically synunetvic,
asymplolically flat solution lo the genevalized Einslein—
Maxwell field equations wmust be stalic. Consequently,
the generalized Einstein—Maxwell field equations do
not admit gravitational or electromagnetic monopole
radiation fields.

5 We shall now turn our attention to the case in which
X equals a constant on the entire domain of a standard
chart.

3. BERTOTTI-ROBINSON TYPE SOLUTIONS

Suppose that v : = (f, %, 6, ¢) is a standard chart with
domain U which is such that X! =@? (a positive constant)
on U, where X*:=g¢(3/86,2/26), In this case it can be
shown that given any point ’= U there exists a standard
chart .=, r,0, ¢) at P with domain UC U which is
such that on U

As? = Q= di? + o 44* + do* + sin8 do?) (3. 1)

and
F=Edindy+bsinddf ndo, (3.2)

where X and E are functions of ¢ and ». Without loss of
generality we may suppose that A is such that

x0,7)=0 and X(O,V):O. (3.3)

The chart » with the above properties is sometimes
referred to as a Novikov-type coordinate system, '?
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Under the present assumptions equations (2.3)—(2.7)
reduce to

Q2:E2e-“<1 - Zg%) + b2, (3.4)
3(Ee™)
(1 Q2> =0, (3.5)
and
k\3(Ee™) _
(1-Q2) = = (3.6)

One solution to the above equations is & ==Q2 =b, I
k+#@?, then Eq. (3.4) implies that E%¢~® must be a con-
stant and hence Egs. (3. 5) and (3. 6) are a consequence
of Eq. (3.4), We shall presently demonstrate that the
case #=@Q° cannot occur,

At this time it should be recalled that since dX =0 on
U Eqs. (2.3)—{(2.7) do not represent all of the function-
ally independent equations of the system (1,1), (1.2),
The equation of this system which is not represented by
Egs. {2,3)—(2.7) is the equation G} =87(73+2A%), In
terms of the chart w this equation can be written as
follows:

(g-lj—— )[X+ (X)z]:-;ﬁ (0% + E%e™), 3.7)
Thus we see that if #b?=@*, then we must also have b*
=0 which is impossible in view of the fact that Q*#0,

Consequently, we must require that #b># @4 and hence

the case # =Q* mentioned above cannot arise,

Since #b*# @', we can use Eq, (3.4) to rewrite Eq,
(3.7) in the following manner:

aZ A Q2
3 k- Qz'

(3. 8)

In order to solve this equation, there are two cases for
us to consider: viz., case (i) 2-Q%? <0 and case (ii)

k- @*> 0. We shall now examine each of these cases in
turn,

Case (): k- Q*<0.
Upon setting
pl =@ k- @ (3.9)
we find that Eq. (3. 8) becomes
32e*
_— 4 A _
T T ae=0.

Thus we may use Eqs, (3.3) and (3. 4) to conclude that

=cosut, E=Cicosut, and Q= b%

where
(Cy)F 1 =Q%Q* - b?)/ (@1~ &).
Case (it): k- @*> 0,

(3.10)

In this case Eq, (3, 8) becomes
9%e*
—a_tT - /‘izel = 0,

where u? is defined by Eq, (3.9), Using Eqs, (3.3) and
(3. 4), we find that

e*=coshut, E=CjcoshuT, and b’z @?,
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where

(Co)?:=Q%b (3.11)

-/ (k- Q).
Thus we see that if the magnetic charge b were set
equal to zero, Case (ii) could not occur,

To summarize the above results concerning the
Bertotti—Robinson type solutions to the generalized
Einstein—Mazxwell field equations, we have the
following:

Theorem 2: Let (M, g, F) be a spherically symmetric
spacetlme containing an electromagnetic field, and let
wi= (t #, 8, ®) be a standard chart with domain U,
Suppose in addition that

(i) g and F satisfy the generalized Einstein—Maxwell
field equations without sources; and

(ii) the function )?i: =g(3/86,3/38) is equal to a posi-
tive constant @% on U.

Then Q? cannot equal %, I & <Q* (2> @?, respective-
ly), then, given any point P< (7, there exists a standard
chart w:=(¢,7, 6, ») at P with domain U c U which is
such that on U

ds*=Q - df* + e dr? + d6* + sin0do?)
and
F=FEdtadr+bsin8d6Ads,

where e*=cos(u?) [cosh(u#), respectively] and E
=C,cos(ut) [Cycosh(nt), respectively]. In these
formulas the constants p and C; (C;, respectively) are
defined by Eqs. (3.9) and (3. 10) [(3.11), respectively],
and @*= b? (@* < b?, respectively),

At present I regard the combination of Theorems 1
and 2 as representing Birkhoff’s theorem for the gen-
eralized Einstein—Maxwell field equations, The only
case which the combination of these two theorems fails
to treat (and which is treated by Birkhoff’s theorem
for the Einstein—Maxwell field equations) is the case in
which the gradient vector of the function X? is null on
a set of measure zero, It is not clear to me how this
case can be handled without first determining (in closed
form) the general solution to Egs. (1.1) and (1, 2) for
the spacetime whose metric and electromagnetic field
have the form presented in Eqs. (2,18) and (2,19), The
determination (in closed form) of such a general solu-
tion appears to be impossible,

4. ASYMPTOTICALLY FLAT MAGNETIC MONOPOLE
SOLUTIONS

In Ref. 6 static, spherically symmetric, pure elec-
tric, source-free solutions to the generalized Einstein—
Maxwell field equations were presented, The un-
fortunate aspect of these solutions was that they had to
be expressed in series form, The purpose of this sec-
tion is to show that it is possible to determine spheri-
cally symmetric, asymptotically flat, pure magnetic
solutions to the source-free generalized Einstein—
Maxwell field equations, As we shall see, the only
obstacle to expressing these pure magnetic solutions in
an elementary manner is a single quadrature,

Gregory Walter Horndeski 671



To begin with, let ({,7, t, ¢) denote the standard
spherical polar coordinate chart of®? R**RxR3, We
now seek a spherically symmetric, asymptotically flat,
pure magnetic solution to the source-free generalized
Einstein—Maxwell field equations whose underlying
manifold M, is of the form

M,={Pc R'|r(P)~pl, (4.1)

where p is some nonnegative real number., SO(3) acts
on 1, in the obvious manner and we assume that the
line element, ds?, and electromagnetic field tensor, F,
have the following form on W,

Ast == 2 dI* + B g + 92(d 6° + sint 8 d?) (4, 2)

and

F=bsin0doAde, 4. 3)

where (due to the proof of Theorem 1) o and 3 are func-
tions only of v and be R. Using Egs, (2.3)—(2.7), we
find that under the present assumptions the only func-
tionally independent equations of the system (1.1), (1.2)
are

oaf28 1 1 0% k0B phbients
¢ 8(_7-—“53 TEERT T s e (4
and ' 1 2 2 28
25{2a 1 =b kb a'e”
€ 2B< P 7‘2> e 5 ° 4.5)

Upon adding Egs. (4.4) and (4. 5) together, we find that

o' == 3+ 38R0yt - kD), (4.6)

In what follows we shall assume that the constant p
appearing in Eq. (4.1) has been chosen so that when
k<0, p=0 and when k>0, p=Fb?, Due to this assump-

tion we can use Eq, (4. 6) to conclude that
e = (Ae 80t - kbR, (4.7

where A is a positive real constant, We shall now
proceed to determine as expression for e'“,

Upon multiplying Eq, (4.4) by » we find that the re-
sulting equation can be written as follows:

d e, @H6RVY 5, r(P-bY)

ar ¢ )+ rrt=kb?) 71— b2 4.8)
The general solution to this equation is

=S/ = kDY M - 231 1 D), (4.9)

where M is an arbitrary real constant and I=1I{(r) is
defined by

r .2 2y {41 ,1,2v3/4
/(1‘) T = [ ((:\ =) )<" ‘(‘5_ kb ) - 1> IJ,V,

Thus we may now employ Egs. (4.7) and (4.9) to con-
clude that

et A (-t —Iebz)'1 Ry —2M+ 1),

(4.10)

(4.11)

Using the binomial series it can be shown that e*®
admits the following series expansion:

2 2 2 L nd 254
()2"‘:A<1— 20 b2 ROEAMRD® L kDY 13R%D

¥ A ot T T T 1008 5698
5WEA DY 138708 2012%H°  15ME%S
1617 12001 1232¢12 7 64413
55k30°8 .
Saar o 16)) (4.12)
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provided # > kb2,

The demand that our spacetime be asymptotically
flat requires that for large »

PP =1 —2m/r + 0,

where 1t represents the mass of the source which is
responsible for the gravitational field, Consequently,
we can use Eq, (4,12) to conclude that A =1 and M =,
As a result of this fact, we see that the expression for
e%® presented in Eq. (4.12) agrees with the correspond-
ing quantity in the Reissner— Nordstrom solution out
through terms involving +3,

In summary, we have shown that the line element and
electromagnetic field tensor of our spherically sym-
metric, asymptotically flat, pure magnetic spacetime,
(M,, 4, 1), must assume the following form if they

satisfy the source-free generalized Einstein—Maxwell
field equations:

s r=2M+1) (ot = R0HT/H

A8t = = L I Ty art
+ 32 (d 7 + sin®6 dd?) 4.13)
and
F=>bsinbdtndo, 4.14)

where [ is defined by Eq, (4.10) and p=0 when 2 < 0
while p*=£%b® when # > 0, The constants 3 and b ap-
pearing in Eqs. (4.13) and (4. 14) represent the mass
and magnetic charge of the source respectively,

In passing it should be noted that the metric present-
ed in Eq. (4.13) reduces to the Reissner— Nordstrom
(pure magnetic) metric when % is set equal to zero,

The natural question to ask at this time is: Does the
metric presented in Eq. (4,13) have any'! “singular-
ities”? The answer to this question is evidently in the
affirmative if there exist points in .M, which are such
that » ~ 2M + 7= 0, We shall now demonstrate that solu-
tions to this equation can exist when M is chosen to be
sufficiently large.

Employing the binomial series, we find that when
7 kD,

D kb 3kb L 1-5-9- ... - (4l - TR
V= — e
10 =204 43 3o 3;2 4711 (4l - 1)t
gn 1:5-9- .. - (4l = T)R'D¥
S T ’

and hence lim,.. /(+)=:0. Due to this fact it is clear
that the image of }/, under the real valued function

fr=1-1(r), must be an interval of the form (v, ~). Con-

sequently, if 2M - «, then there will exist points in 3/,
at which = 23 +7=0, Due to the form of the line ele-
ment presented in Eq. (4. 13) these points will lie on a
“null hypersurface, ”

When © © 0, I am not sure how small the real number
a defined above will be, However, if 7> 0, then @
~ (D)L This is so since in this case the function /(")
defined by Eq. (4,10) is strictly positive and monoton-
ically decreasing as 7 increases, As a result f(») - on
M, and hence f() > (kb?)1/4, since +*:- kD% on M,. Con-
sequently, when % > 0 the constant M/ cannot be chosen
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arbitrarily close to zero if there is to be a singularity
in M,, I suspeect that a similar remark pertains to the
case k < 0; however, I have no proof of this claim,

Further examination of the function f shows that

(i) if b* >k then f is critical at each point on the
hypersurface = 0| and attains its absolute minimum
on this hypersurface, while

(i) if b2 <k,
increases,

then f is monotonically increasing as »

Thus if M, experiences a singularity and b* > k, then
the value of 7 at the “outermost” singularity must be
greater than or equal to |61,

Now suppose that the constant 37 has been chosen so
that the spacetime (3{,, g, F) experiences a singularity,
If 7 denotes the value of + at the outermost singularity,
we let M, ,:={P&M,l»(P)~ 7}, The spacetime
(M, +,8, F) can be extended to a larger spacetime con-
taining an event horizon in the following manner,

Let » denote the function defined on 7, , by

r 4 2
"=:f+f ENCEY Y
5y V3~ 2 +1(x)]
It is easily seen that the collection of functions
{v,7, 8, ) defines a global chart for V7, .. In terms of

this chart the metric and electromagnetic field assume
the following form:

. -2+l 2p?\ 3 /4
ds* :—L(r_%gf—”-ml——) v+ 2(1 - %—Z—> Adv dr

+72(16% + sin®0 do?) (4.15)

and

F=0bsinddondd, (4.16)

The manifold .1/, , corresponds to the region 773 = =,
but the metric (4.15) is nonsingular on the larger mani-
fold N for which p ~r =, We now let (¥, 2, ) denote
the spacetime containing an electromagnetic field whose
metric, /77, and electromagnetic field, I, are given by
Eqs. (4.15) and (4.16). This spacetime is evidently

an extension!® of (M e F) and it has an event horizon
at =7, Moreover, (N,#h, I) satisfies the source-free
generalized Einstein—Maxwell field equations.

16

The spacetime (N, /1, ) experiences a “‘genuine
singularity at # =p.” This is so since a straightforward
calculation using the metric presented in Eq. (4. 15)
shows that

¢ cavet _ 4 ((— 278 + 3054 + 1b%E — 2kpY)
abet™ T3 (-t - kb%)?
g -2+ 1)(3;u3;‘1> oarihly 12
(-t = pDY)T572 T3

where C,;., denotes the Weyl tensor, Thus we see that
as © —p*, CupegC? = = and hence there exists a
curvature singularity * at =p.” Consequently, the
spacetime (N, 4, F) cannot be extended beyond 7 =p,
This implies that if one were to require the constant »
to be positive, then the “radius” of any magnetic mono-
pole would have to be greater than or equal to (#5674,
For if this were not the case, then it would be impossi-
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ble to find a spherically symmetric, asymptotically
flat, source-free solution to the generalized Einstein—
Maxwell field equations which is valid at all points out-
side of the magnetic monopole, In other words, when

k is posiltive, theve ave no asvmplolically flal magnetic
monopole solulions o the genevalized Einslein— Maxwell
field equations corvresponding lo a poinl source,

Due to the above work, we see that the source-free
generalized Einstein—Maxwell field equations admit
static, spherically symmetric, asymptotically flat,
pure magnetic solutions containing an event horizon,
Since the generalized Einstein—Maxwell field equations
are nof invariant under a duality transformation, ¥ we
cannot employ such a transformation to turn these pure
magnetic solutions into pure electric solutions. Thus it
is still an open guestion as to whether there exist
spherically symmetric, asymptotically flat, pure elec-
tric solutions to the source-free generalized Einstein—
Maxwell field equations which contain an event horizon,

In Ref, 18 it was argued that a possible alternative
to the usual energy—momentum tensor T;; of the elec-
tromagnetic field used in general relativity is provided
by 7;;:=T;; tkA;;, where T;; and A;; are defined by
Eqs. (1.3) and (1, 4) respectively, We shall now con-
clude this paper by examining the behavior of 7;; and
/ ;; for the magnetic monopole spacetime (M, ., g, F)
considered above, For the purposes of this discussion
we shall assume that (1! o, &y ) is embedded in the
spacetime (N, /1, F),

Let () be an observer in .M, ; whose world line is an
integral curve of the vector field # :=c~%3/3f, where ¢°
is defined by Eq, (4.11), Thus (/ is a Killing observer,
Using Eq. (2.3), it can be shown that under our present
assumptions!

T{re, ) = b%/ 877t 4.17)
and
1 {6° RVE 4 | SR
7 (e, 2) = 877( - 75—‘(7 v (4.18)

Due to Eq. (4.8) we may rewrite Eq, (4.18) as follows:

(0 = Y2+ 7Rbe"®
8rri(rt - kpY)

7 )=

-28

(4.19)

where 7% is given by Eq, (4.9).

Equation (4,17) clearly indicates that 7{(r,u) is posi-
tive on 4, .. However, in view of Eq, (4.19), it is by
no means obvious whether a similar remark applies to
7 (u,u), although it is apparent that 7 (i, #) is positive
once » gets sufficiently large since in that case 7 e, 1)
=T(t,u)+ ()%, Employing Eq, (4.19) in conjunction
with our earlier remarks concerning the size of 7, it
is not difficult to show that:

(i) if # <0, then 7 (i, n) is positive for all observers
near the event horizon;

(ii) if H#0 and H*:
J[m - and

>k 0, then [ (v, u) is positive on

(iii) if 72 <k, then 7 (v, u) is negative for all obhservers
in a neighborhood of the event horizon, 2

I presently suspect that 7 (¢, ) is positive on M, ,
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when k <0, since it is positive near the event horizon
and near infinity. Unfortunately, I have been unable to
establish this claim. However, if this conjecture could
be proved, then we would be able to say that 7 (u,u) is
positive on M, , except when 7> <k (and hence b% <k),
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6For a detailed discussion of event horizons see part two of
B. Carter’s article in Black Holes, Proceedings of 1972
session of Ecole d’ét€ de physique theorique, edited by
C. DeWitt and B.S. DeWitt (Gordon and Breach, New York,
1973).

1TA duality transformation is the transformation which re-
places F;; by cos(@)F;;+sinla) *Fy;, where o is an arbitrary
real number,

18G,W, Horndeski and J, Wainwright, Phys. Rev. D 16, 1691
19773,

%Recall that Eq. (2.3) represents the equation — G}=— 8x7 §.

20It2 should be noted that, in order to have 7% <k, we require
b <k,

Gregory Walter Horndeski 674



Rigorous results on ferromagnetic lattice spin systems. |
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The Lee-Yang theorem was extended to the case of the correlation functions of the Ising ferromagnets
(s = 1/2). Each adjacent pair of zeros of the (n + 1)th correlation function in the complex fugacity plane
is separated by one and only one zero of the nth correlation function (n =0,1,2,...,N—1), and none of
zeros of each function degenerate except for the infinite temperature in the completely connected system.
The first Griffiths inequality for the correlation function was elaborated such as {o 00, >>
tanh"(mh /kT). The inequality for the free energy in the presence of the external field was obtained as

—mh<(h, T)—J(0,T)< — kT log[cosh(mh / kT)].

1. INTRODUCTION

Lee and Yang first proved the theorem that all fugacity
zeros of the partition function of the Ising ferromagnet
of spin 5 lie on the unit circle of the complex plane.!
This theorem gives useful information about the co-
operative phenomenat.2 A few years ago, on examining
computer experiments, 3+% this theorem was extended to
Ising ferromagnets of arbitrary spin®*~" and also proved
for the anisotropic Heisenberg ferromagnets, the gen-
eral Ising models, etc,®*’

After these developments, we know that the Lee—~Yang
theorem is universal for any ferromagnetic lattice spin
system, independent of the lattice size, the dimension,
the strength and the range of the spin—spin interaction,
the boundary condition, the component spin, and the
commutativity of the spin variables of the system.

On the other hand, there exists the well-known fact
that the physical properties seem to depend on the di-
mension, the interaction range, etc., of the system.
For example, in the one-dimensional Ising chane there
occurs no phase transition, 2 put in the system of more
than two dimensions the ferromagnetic phase transition
does occur, 12,13 where the critical exponents of the phy-
sical quantities really depend on the structure of the
system. ™

The aim of our work is to narrow the gap between the
universal property and the structure-dependent one for
the ferromagnetic lattice spin systems from the side
of the former.*® We tried to extend Lee—Yang one-
circle theorem to other properties, and obtained sev-
eral rigorous theorems. Using these theorems, we also
obtained the new inequality for the correlation functions
and that for the free energy in the presence of a uniform
external field, of which the former contains Griffiths’
first inequality. '3:16:8

This work was suggested from the results of com-
puter experiments on finite spin systems. .18 parti.
cularly, our motive comes from the question why nu-
merical results for small systems, much smaller than
statistical mechanical magnitude, give more suitable
information than expected.

The obtained results show that the spin functions,
which we call the partition function and the unnormal-
ized correlation functions, have some topological in-
variant properties for various values of coupling param-

675 J. Math. Phys. 19{3}, March 1978

0022-2488/78/1903-0675$1.00

eters of spins. This fact seems not only to assure the
scale-invariant properties of the free energy or corre-
lation functions, **~** but also to indicate some dimen-
sional-invariant one,

In this paper we propose the results for the Ising
ferromagnets of spin 3. In paper II we will extend the
results to the case of the Ising ferromagnets of arbi-
trary spin. In paper III the results will be extended to
the case of the Heisenberg ferromagnets. We note that
another approach, with results similar to ours, has
been reported for the case of the Ising ferromagnets of
spin .3

First we introduce the definitions. Secondly, the one-
circle theorem for the partition function is extended to
the case of the correlation functions. Next the rigorous
relations between the fugacity zeros of the spin func-
tions are proved. Then the fundamental theorem on the
distribution of the fugacity zeros of the spin functions is
presented. Then several new inequalities for the cor-
relation functions and the free energy are proved in the
presence of the external field. Finally we give a
discussion.

2. DEFINITIONS

The Hamiltonian of the Ising model of spin 3 is written
as

N
Hy =H o+ 23 mh;o; (2.1a)
1=

and

Hoy=- 27 J150:05,

(i)

(2. 1b)

where o; is the spin variable at the 7th site and takes
the values g;=+1, £, is the external field at the ith
site, m is the magnetic moment, J;; is the coupling
constant between the /th and jth spins, N is the total
number of spins, and }, (;;, denotes the summation over
all spin pairs.

We define the generalized partition function, that is,
the partition function under the nonuniform external
field, as the following function of N variables:

32N> B):tr exp(— B/L/N) .
=tr {exp(— B/—/O) .rllgzi}’

Fylzy, 2, ..

(2.2)
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where z; =exp(Bmh,;), 8=1/kT, T is the temperature,
k is the Boltzmann constant, and tr denotes the trace

over all Ising spin states, that is, the summation over
all values of the spin variables.

The spin function of the nth order in the presence of
the uniform external field is defined as

fn(zaﬁ; 7'15 . "in)

n N
=tr {( I Gik) exp(— B ) 11 z”’} ,
k=1 i=1

where n=0,1,2,...,N=~1,N, z=exp(Bmh), h is the
uniform external field, and z? is usually called “fuga-
city.” The partition function in the presence of the uni-
form external field is the spin function of the 0th order,
fu(Z; B).

(2.3)

3. LEE-YANG THEOREM FOR CORRELATION
FUNCTIONS

In this section the Lee—Yang theorem on the fugacity
zeros of the partition function of the Ising ferromagnet
(s =%) is extended to the case of correlation functions.

Lemma 1; The spin function of the nth order is gen-
erated from the generalized partition function, such as

fn(Z)B; il? .. "in):(-i)nFN(Zly . n.;zN’B) (i:\/—j)’

(3.1

where z, =z for kd{iy, ..., 4,5, and 2, =iz for &’
e{iy,...,i,}. (The notation { } denotes the set of sites.
ke{iy, ..., i, shows that the site k does not belong to
the set of sites i3,...,7, and soon.)

Proof: Using the fundamental identities of the
following,

0y = (~ )%, (3.2)
we can write the spin function of the nth order as
f"(Z,B; i’l) o -,’L~ )
n N o
:tr( n oi> exp(—pH,) Nz
k=1 ® o it
= (= )" tr exp(— H y) .ﬂlzzi, (3.3)

is

where z; is the variable defined in the above statement.
Then the lemma is immediately proved. Q.E.D.)

Theovem 1: Every fugacity zero of a spin function of
any order lies on the unit circle of the complex plane.

Proof: As is well known, the Lee—Yang lemma
(¥ J,,=0) states that if F(z,,..., Zy,B) vanishes and
jz,1>1 for all i, then we have |z;1=1 for all i. Using
the Lee~Yang lemma and Lemma 1, we easily obtain
that if f,(2,8;%,,...,%,)=0 and lzl>1, then we have
lz)=1, because lizl=|zl. Q.E.D.)

This theorem is the extension of the Lee—Yang theo-
rem for the partition function (f;) to the correlation
functions {f,; 0 <n <N).

4, BASIC THEOREMS ON THE DISTRIBUTION OF
THE ZEROS OF THE CORRELATION FUNCTIONS

In this section we investigate the problem of how the
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fugacity zeros of the correlation functions relate to
each other on the unit circle of the complex plane. For
the sake of this aim, let us introduce the connected
spin function of the nth order,

q)n(Z, ﬁy Y 1-1’ . '?imj)
=12, B; 11, ooy i) + Y (2, B; 14, -

where ¥ is a complex parameter.

win,j)y (401)

Lemma 2: The connected spin function of the nth order
is generated from the generalized partition function,

‘bn(Z;B; Y5 ity .,i,‘,j)
=CON="Fylzy, o vy 2y e eny 2y, B) (y#2 1) (4.2)
or
©.(2,8; 75 f1y e s i)
=2 (=)"Fy4lz{, ..., 25,8)2 (y=x1), {4.3)

where 2, =2 for ka{iy, ..., i}, 2y =iz for &' iy, ...,
iy Z;=2(1+9)/C(¥), z)=2,exp(vBdy;) (k#j), and C(¥)
— (1 - ,)/2)1/2‘

Pyoof: Using Lemma 1, we can write the connected
function as

d’n(z,B; Y ila .. -yimj)
= (=D Fy(zyy..ny2s .00, 25,B)
—ivFelzy, ..., iz, .., 20, B} (2, =2). 4.4

By the reduction formula, the generalized partition

function can be written as
Fylzy, ooy 25y cny 2y, B)
s 25, B) T 27 Fy (21, . (4.5)

:Z]uFN_l(ZI,.u ‘72&’6)7

where z; =z, exp(8J,;) and z; =z, exp{~ BJ,;) (k+j). From
Eqs. (4.4) and (4.5), the following relation is obtained:
* iYI’ ])

= (=DM +NFy4let, ..., 2%, 8)z

én(zy S;’V; ily o

+(1=Y)Fy4(21, ..., 25,827 (4. 6)
For y#+ 1, Eq. {4.6) can be written as
@,(2,8; V5 i1y e e nsind)
=(=)"CO{2(1 + 1)/ CONFy (21, .. ., 25, B)
+{2(149)/CONFy (25, .. ., 25, B) ], 4.7

where C(¥) = (1 -y*)*’%. Applying again the reduction
formula {(4.5) to Eq. (4.7) and introducing a variable
Z,=2z(1+%)/C(y), we obtain Eq. {4.2).

For ¥y =+ 1 we immediately obtain Eq. (4.3) from
Eq. (4.6). Q.E.D.)

Theovem 2: The two spin functions, f,(z,8; iy, ..., %,)
and f,,1(z,B8; i1, ..., %, ), have no common fugacity zero
in a completely connected system, except for the in-
finite temperature. Here the completely connected sys-
tem is the system in which every lattice site is con-
nected with one or more than one site through the non-
zero coupling parameters.

Proof: Taking the value of ¥ in Egs. (4.1) and (4. 3)
as - 1, we have
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oyt J)

- -1
,,ZN,B)Z ’

fn(zg B,' il) ce ey 1,,) —fn+1(2; B, ily .

=2 (= i) Fy (25, . (4.8)

where z; =z, exp{~ 8J,;) (2,=2 or z,=i2) {k+)).

In the completely connected system, there always
exists the nonzero coupling parameter for any site.
Then suppose %#” be the nonzero coupling site for j, that
is, Jye;#0 (B7#j).

If {2z} =1, we have |z;| = exp(~ BJ,;) and we obtain
that (27! <1 for any 2 (##7,j) and [25¢ | <1 except for
B =0. Thus using the Lee—Yang lemma, we immediate-
ly obtain

Fy (el ..., 2pm, .0, 25,8220

for |2;] <1 (B#F",7) and |24 | <1, (4. 9a)
that is,

2,85 dny e oy i) # fraa(2, 85 4y oo vy iy 7)

for |z| =1 and B+#0. (4. 9b)

On the other hand, according to Theorem 1, both f, and
Jfuu vanish only when |z|=1. From the above fact we

find that f, and f,.; have no common fugacity zero on the
unit circle of the complex plane. (Q.E.D.)

Extending Theorem 2, we obtain the following
theorem.

Theovem 3: The connected spin function,
®.(2,B8;¥;%1,...,1,7), has the following property.

I 1{1+9)/C(¥)1 =1, every fugacity zero of &, lies on
the unit circle of the complex plane.

I 1(1+»/C»i+1ory=+1, &, cannot be zero for
fz] =1.

Proof: First we consider the case of y#z 1. In this
case we know from Lemma 2 that the connected func-
tion is written as Eq. (4.2). If [{1+%)/C(¥)l =1, we
have [z,;] = {z] in Eq. (4.2). Besides we know |z,| =[z|
for any k (#j) in Eq. (4.2). Then using the Lee—Yang
lemma, we obtain that it holds for |z| =1 if F, =0 and
lzl=11in Eq. (4.2). As &,=C(y)(~i)"F,, thus the proof
of the first statement is found. I [(1+9)/C(¥)] #1, we
have {z;| #[z] in Eq. (4.2). It follows from the Lee—
Yang lemma that Fy never vanishes for [z, =1 (& #})
and |z;1#1 in Eq. (4.2). This gives the second state-
ment for @,.

For v=%1 we obtain Eq. (4.3) and a similar proof
to that of Theorem 2 is found, (Q.E.D.)

Applying Theorem 3 to the cases of real ¥ and pure
imaginary v, we obtain the following theorem.

Theovem 4: The function, T',(z,B; 6; iy, .
which is defined as

1",,(2, B; 6) il) ety 17!)7)
=2 2,B; iy e ey i)+ 0P (2, Bs 1y, ..
has the following property.

"rin!j))

Lind), (4,10

If =0, every fugacity zero of I', lies on the unit
circle of the complex plane.

If 6<0, I', cannot be zero on the unit circle, that is,
for Izl =1.
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Proof: When 62 0, we may write 6 as 6 =9* where y
is real. Then the function ', can be written as follows:

FR(Z,B; 6; ily . 'yin:j)
:{fn(z: B§ il’ R ] in) +i7fn~rl(2, B; il: «r oy in’j)}
X{fn(zs B; il’ ey 7:n) ‘iyfml(zs B; il) DR ] in’j)}

=& (2,8; i¥; 1y, - -, V{2, B; —i¥; i1y .., 7), 4. 11)
where &, is the connected spin function of the nth order.
Since [(1+iy)/C{xiy}| =1, we find with the use of The-
orem 3 that every fugacity zero of I', lies on the unit
circle of the complex plane.

When 6§ <0, we may write 6 as 6=~ »* where y is
positive real. Similarly to the previous case, T', can
be expressed as

Fn(Z:B; 6; 4y, .. -yimj)

°-7j)¢n(2,6; -%s i],---,j)- (4.12)

Since 1(1+%)/Clzy)1 #1 or y=+1, we find with the use
of Theorem 3 that T",#0 for [z]=1, Q.E.D.)

zén(z, B’ Vs ily “

Theorem 4 will be used for discriminating the de-
generacy, etc., of the fugacity zeros of the spin func-
tions later.

5. MAIN THEOREM

In the previous sections several basic theorems and
lemmas on the spin functions were proved. In this sec-
tion some lemmas and the main theorem are
demonstrated.

Lemma 3: The spin function, f, (0<n <N), has the
following property.

(a) fn(Z,ﬁ; il! vaey in)fnil(Z’ B, 7:1, .
= (2% =z (y)Y(y), (5.1

where y=2z2+2"%, and both ¢(y) and ¥(v) are the poly-
nomials of y.

‘,in’j)

(b} For the even system, we have

Foul2, By i1y ooy ig) = () (5. 2a)
and

Fam1(2,Bs b1y oo igpn) =(28 — 2 T)P(r). (5. 2b)
For the odd system, we have

Foul2, Bs iy, oo dg) = (2 + 270 () (5.2c)

and
voydgt) =(2 =2 NY(y) (v=2%+27%),

{5.24d)

Sam1(2, B; iy, .

Here we call the system even or odd, according to
whether the total number of sites is even or odd.

Proof: Statement (a) can be proved from (b). Then we
have only to prove statement (b).

From the definition of the spin function, we find

fulz, Bty i) = 2 PYB; iy, ..
s=-N,N 2

A (5.3)

and
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(Li05=8m,
PP iy, ey i) = (

I crik> exp(- ¥y,  (5.4)
k=1

where } .y y, denotes the summation over the values
§s==N,=-N+2,...,N=2 N, and 3 ‘€% denotes the
summation over the spin states of $%.,0; =s (s : fixed).
As H, has the spin reciprocity property, we can easily
find

PR@iiy .o, i) =(- 1P Bsiy, ..., 1,). (5.5)
Then the spin function can be written as
fn(zs By 1.’15 L} Zn)

=23 PPB iy, . i M2 (- 1) 270, (5.6)

s=(
where Y s», denotes the summation over the nonnegative
values of s.
In the even system, s takes the values 0,2,4,...,
N-2,N (=2N") in Eq. (5.6). If we write s as s =2s’
(s’ :nonnegative integer), we obtain

28ty g (5.7a)

25 +zt=z
and
25 Z's:(ZZ _Z-Z)(ZZ(S'-I) +22 (' -3)

42208 g g g2ty (5.70)

By the well-known algebraic theorem, we know that the
reciprocal polynomial in 2% can be expressed as a poly-
nomial in z* +2z%2, Thus we obtain

2+ 275 =@ v} (5. 8a)

and

25 =275 = (2% = 2D (y), (5. 8b)

where both ¢ (y) and ¥4(v) are the polynomials in y = z°
+2z-2,

In the odd system, s takes the values 1,3,5,...,N-2,
N (=2n'+1) in Eq. (5.6). If we write s as s =25’ +1
(s’: nonnegative integer), we obtain

zs+z‘5:(z +Z-1)(Z2s' _22<s'-17 +22(s'-2) e +Z-2s’)

=(z +2 el (5.9a)

and
25 Z'S:(Z - Z-l)(z2s‘ +Z2(s’-1) _‘_z2(s'.2)+ .. +z-23‘)
:(Z - ZJW;(N%

where both ¢4(y) and ¢i(v) are the polynomials in y.

(5. 9b)

A linear combination of the polynomials in v is also
the polynomial in v. Then from Eqgs. (5.86), (5.8}, and
(5.9) we immediately obtain the relations (5.2a)—

(5. 2d). Q.E.D.)

Lemma 4: Let us take v =2 + 272,
(a) I {2zl =1, then v is real and {y| <2.

(b) If y is real and {v!| <2, then we have {z| =1 in the
complex z plane.

Proof: (a) ¥ izl =1, we may write
2

22 —exp(i6) and 2z =exp(-i8), (5.10)
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6 being real. Then we have

y=2cos¥, (5.11)
and we find that v is real and {y{ <2.
(b) Let us express 27 in the form
2* = rexp(i®), (5.12)

where 7 is real and nonnegative, and 6 is real. Then
we have

v=vexp(i8) + r! exp(~i6)

=(r+7r" cosb +i(r -~ »*) sind. (5.13)
If v is real, we obtain
(r =) siné =0, (5.14)

which implies that »=1 or § =n7 (n:integer). If r#1,
we have 6§ =nm, and soy == (r++" and |v] >2. Hence,
if v is real and also |y| 2, then v=1, that is, lz|

=1, Q.E.D.)

Lemma 5: The square of the spin function can be fac-
torized only by the variable v (=2 + z%).

In the even system (N =2N"),

Nl
Bz, B3y, .., by,) = A n1 (v—ay? (5.15a)
S=

and
N -1
Fonat(@,B5 81y« + oy ) =A%(0P = 4) T (v = B,)°. (5.15b)
s=1
In the odd system (N=2N'+1),

Nl
Fon(2, By, « vy iy =A%y 21 (v = a)? (5. 15¢)

and
N’ 9
j%nil(za ﬁy il’ ooy iZntl) :AZ(:\) - 2) nl ('v - Bs) . (5. 15d)
8=

In Egs. (5.15a)—(5. 15d), both a; and B, are real, {a,l
<2 and 18,1 <2 for every s.

Pyoof: The factorization expression follows easily
from Lemmas 3 and 4, and Theorem 1. Here we have
only to show the fact that the constant factor (A% is
common in the consecutive spin functions.

As easily seen from Eq. (5.6), the highest term of
the polynomial in v only comes from the term of 2
+{~1)"z7. Then the coefficient of the highest order of
the polynomial is common for z or y, and we have

A=PP sy, -

By the definition, P{"’ contains only the states in which
every spin variable takes the same value, that is, o,
=+1 (or - 1) for every #, and we obtain

cerln). (5.16)

PiBsdy,y e enyty) :exp(BE J,-j) for any n. (5.17)

G.)
Therefore, we obtain the expressions (5. 15a)—(5. 15d).
Q.E.D.)

Now we have been ready. Let us enter the main state-
ment, in which a certain “universal’ property of the
ferromagnetic lattice spin system is found.
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Theorem 5: Let us consider the consecutive two spin
functions, f,(z, 841, « .., s and fha(z, 8521, «. ., 1p f), in
a completely connected system (0 <»n<N-1). The fuga-
city zeros of both functions separate each other on the
unit circle of the complex plane, that is, each adjacent
pair of zeros of f, in 2% is separated by one and only
one zero of f,, except for the infinite temperature.
None of the fugacity zeros of the spin function, f, (0<n
< N), degenerate for finite temperature.

Proof: First we consider the even system (N =2N').
As defined in Theorem 4, let us consider the following
function,

r2n(z; B; 65 il! rrey iZm ])

:fgn(Z, B;il, ] iZn) + Gfgnd-l(zsﬁ;il, .. (5' 18)

- iZn!j);
where & is real. Using Lemma 5, Eq. (5.18) can be
written as

1"2,,(2, B’ 6; il: e i’Zn:j)

N? Nt
:A2{ Ty-—o)+6(02 -4 1 (v -55)2}, (5.19)
s=1

s=1
where o, and B, are real, |a,/<2 and 18] <2 for every
s. Let the subscript be defined as oy > o, > a3 > * -+ = ay:
and 2=8,28,28;32 2By, 4> - 2. (Let us denote 2
and — 2 as 8, and By,.)

Now we introduce the following rational polynomial:

0 - 2’

B N S (5.20

We know from Theorem 2 that the sets of zeros, {al,
Gay vvey Qyot and{2, B1,B2, ..., Bys 1+ ~ 2}, have no com-
mon element. Then the algebraic equation

rzn(Z, B, é;il, ...,izn,j)zo, (5.21)
is identical with the equation
Z(y; {a, {84 = 0. (5.22)

The number of roots of Eq. (5.21) is 2N with re-
spect to z°, and that of Eq. (5.22) is N with respect to
v.

Suppose that there exist two or more than two a’s
between some interval of 8’s, for example, B; and B,
(0<t<N"), given by

Bt \,-as ,\-as ™~ e (5-23)

1 9 - asm>6t+l (7’}722)
In this case the rational polynomial, =, has the follow-
ing part, as seen in Fig. 1, so that its value is positive
in the region B8, > v >Bs,,, and the minimum value is

8, (> 0) there. Then if we take 6 as §,>6>0, Eq. (5.22)
must have the nonreal roots. That is, Eq. (5.21) must
have the roots of 1z| #1 from Lemma 4. This is con-
trary to Theorem 4 for 6 > 0. The discussion is sim-
ilarly performed for changing « and B. Therefore, we
find that the set of &’s, {a1, as, - .., @y}, must sep-
arate the set of 8's, {8, 81,83, -+ ., Bys}, except for the
degeneracy of each zero.

Next suppose that there exist some degenerate a’s,
as=oag (s#s’). In this case, the number of real roots
of Eq. (5.22) becomes less than N, and so the complex
roots in ¥ must appear. This again contradicts with
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FIG. 1. The curve of the rational polynomial, «= =(y), which
has the nonnegative part [ E () = 6> 0] for £, <y <By.q.

Theorem 4, Therefore, every zero of the a’s and B’s
must be simple, that is, nondegenerate.

Theorem 2 holds for 8 # 0. Then the conclusion ob-
tained here holds except for the infinite temperature.

The case of the odd system is almost similarly dis-
cussed, and the same conclusion is obtained. (Q.E.D.)

Now let us investigate the distribution of zeros of the
spin functions in the limit cases.

First we consider the case of the infinite tempera-
ture, i.e., 8=0. In this case the generalized partition
function becomes as follows,

N
Fylzy, ..., 2y, 0) =trexp(0) 1T 27
1=1

¥
=TI (z; +z7Y). (5.24)
i=1

Then it follows from Lemma 1 that the spin function of
the nth order is written as
Sz, 0541, 00,4
Nen n

O(z+zY) @z + G2
R?=1 R=1

=(z+ 2z W(z = 271y,

=(=)"

(5.25)

This shows that the fugacity zeros of the spin function
of the nth order degenerate at 22 == 1 [(N ~n)-fold] and
at 2° =1 (n-fold) at the infinite temperature.

Next we consider the case of the zero temperature,
i.e., B=%=. In this case the spin function of the nth
order is written in the limit

-1 ) .
A fn(z’ ooyll’~--:ln)
N

n
:limtr< ofk) exp<—BfL/9—B 2 J,,-) nz%, (5.286)
1 (i) i=1

B k=

For any finite system lim and tr can be interchanged.
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It is easy to see that
lim exp(— B}L/o -8B 2 ’]ij>
B-e £ij)y

_hmexp -B23 1—00)}
(i)

_fl foroy=0p=-+r=0y=+1 (or - 1),
{O otherwise. (5.27)
Then we obtain
AT 2,050y, i) =2 4 (= 1) (5.28)

Therefore, the distribution of zeros can be obtained as

Ay 2y 5y ey i)
N
=T{z -z explin(2s - 1)/NT {5.29a)
s=1
and
A-lfznél(zy *, 7.’1: ey i2n+1)
N
=T {z -zt explin(2s)/NT. (5.29pb)

s=1

We find that the distribution of the fugacity zeros of the
spin function in the zero temperature is determined
only by the even—oddness of the order n.

After the above investigations, we obtain the follow-
ing corollary.

Corollary 1: The fugacity zeros of the spin func-
tion of the nth order (0< n<N) distribute as follows:
The zeros distribute at the zero temperature uniformly
as 2%= explin(2s — 1)/N] (for even n) or 22 =explin(2s)/
N (for odd 1) (s =1,2,...,N), move on the unit circle,
isolated from each other, as temperature increases,
and finally degenerate at 22 =— 1 [{N —~ n)-fold] and
2% =1 (n-fold) at the infinite temperature.

The feature of the above corollary is shown in Fig. 2.
This property is universal for Ising ferromagnets of
spin 4, independent of the size, the dimension, the
strength, and the range of the spin—spin interactions,
and the boundary condition of the system.

6. SEVERAL INEQUALITIES

New inequalities for the correlation functions and the
free energy can be proved from the above theorems.

Incqualily 1: When z » 1,

fn(za By ily . ’in)

Z -~z -t
B +;Ifﬂi1(2 B 11: .

(6.1)

ey bt) 1= 1),

Proof: It follows from Lemma 5 and Theorem 5 that
the spin function can be expressed for the even system
as N*

Fon(2,Bidty e eyt =A Tl (y=ay) (y=2"+2z7) (6.2a)
s=1
and
, Nf.1
ontl(Za B; jly vy 7"2)13:1) :A(ZZ - Z-z) H (X’ - Bs)’ (6' 2b)
where =t
2> Q- Bl ¥y T B') \"'/Bvll Qye > — 2. (6.20)
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FIG. 2, The trajectories of the fugacity zeros of the spin func—
tion of the nth order, f, (v, £iéyy0.0,4,), inthe y plane (y = 2%
+z'%), for the whole region of the temperature, that is, for

0 =tanhBJ =1, where J is an adequate positive constant of finite

value,

From Eq. (6.2b), we have the relations

-1

z2~2z .
;Z‘If%il(z B; 11; caey lZn*l)
Ne-t
=A(y-2) ﬂl (y=8y {6. 3a)
Sz
and
z+2" .
_‘“jmel(z B Zl, <eey lZntl)
N'-1
=A(y+2) 11 (v-8y) (6. 3b)
s=1
Using Eq. (6.2¢), we obtain the ineguality
N2 oL N+
(3""2) n (y"Bs) < Il (3"65) (6.4)
8=1 s=1
ANS |
<(v+2) I (3 -B;) fory=2,
s=1

If z is real, we find ¥ = 2. Since the constant A is posi-
tive, we obtain the following relation:

a1 1
z-z
E—Jr“z"ernn < fan <"*‘1f2nﬂ for real z. (6.5)

Thus for 2> 1, the expression (6.1) can be obtained for
any n. (It also holds for the odd system. ) Q.E.D.)

In addition, we can easily prove the following
inequality,

fn(Z;B;il: .. -’in) =

Inequality 2: 1f the external field & is nonnegative
(h = 0), then the correlation function satisfies the follow-
ing inequality,

0 forz=1(n> 0}. (6.6)
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cee Uin> 2 tanh” (ﬂ) n=1). (6.7)

{oy,0 kT

i

Pvroof: The correlation function of the nth order is
defined as

<0i10i2 T 0i,,)

:tr( Ynl O'ik) exp(— gH N)/ tr exp(~ BH y)
k=1

:fn(z, B;ila'-'ai’n)/f()(z:ﬁ)- (68)
As easily seen, we have the relation

fn(zyﬁ;i'l;"‘;in)‘_fn Jil___.éf_l' (6.9)

folz, B) Jat Fnea hfo

From the relations (6.1) and (6.6), we find

fn'ﬂ L 2= z-l 4

7."7'/2—;—2:1 forz=1 (n = 0). (6.10)
From the relations (6. 8)—(6.10), we obtain the
inequality

( o (2222) forz=1 m=1).  (6.11)

O',-IUin--O','n = Z_-I-_Z—'I or z = = 1), .

Thus the expression (6.7) follows from 2z = exp(mh/kT).
Q.E.D.)

Inequalily 3: Let the free energy per spin be defined

as

3, 1) =-"L 1082, (, 7)

where Zy (h, T) =f,(z, B). (6.12)

1f the external field % is nonnegative (k= 0), then the
free energy satisfies the following inequality,

~mh<F(h, T)=F(0,T)<=kT log {cosh(%@)}.
(6.13)

Proof: First we write the free energy as a function
of z and B as

}(Z,S) :j (h7 T)- (6. 14)
As easily seen,

9 logz NB' fole, B) )
From Inequality 2, we obtain

27(z,8) _ z—z .

~15P S logz “ 2w forevd (6. 162)

or
o7 (z, -z
~z1l<p }gzz B)S—Z'lz+z,1 for z= 1, (6. 16b)

where we used the trivial inequality, {(o,)= 1.

The integration of expression (6. 16b) with respect to
z between z = 2’2 1, gives the relation

-~ logz <7 (2, 8) -7 8%

z+2zt

3 (6.17)

for z= 1,

<~ log
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Using z = exp(mh/kT) and 8 =1/kT, we obtain inequality
(6.13), @Q.E.D.)

7. DISCUSSION

In this paper we obtained some rigorous results on
the Ising ferromagnets of spin 3. We found that the func-
tions which satisfy the Lee—Yang theorem make some
sort of a family. That is, not only the partition function
but all other spin functions satisfy the one-circle theo-
rem of Lee and Yang. The fugacity zeros of the spin
functions are not known to have a clear physical mean-
ing now, however the whole image obtained here about
the correlation functions in the presence of an external
field gives some indication for investigating the cooper-
ative phenomena.

The fugacity zeros of the spin functions show some
topological invariant feature independent of the strengths
of the coupling constants between spins (see Fig. 2).
This fact seems to relate to the existence of the scale-
invariant properties of the free energy and the correla-
tion functions in the cooperative systems. Moreover
this property may assure a certain kind of a dimen-
sional-invariant property for cooperative phenomena,
too.

Inequality 2 for the correlation function contains
Griffiths’ first inequality,

<oilo,~2---oi">> 0 for h>0, (7.1)

and our result elaborates it.

Inequality 3 gives some information about the free
energy under the uniform external field. The deviation
of the free energy in the presence of the external field
from that in the absence of the field is limited by the
normal analytic function of the external field. This is
another expression of Lee—~Yang's conclusion that the
phase transition may occur only in the absence of the
external field, and our result is a little more
quantitative.

The results obtained in this article can be extended
to the cases of the Ising ferromagnets of arbitrary spin
and the anisotropic Heisenberg ferromagnets. Those
will be reported in the next papers.
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In the present paper we analyze the representations in quantum mechanics of classical canonical
transformations that are nonbijective, i.e., not one-to-one onto. We take as the central example the
canonical transformation that changes the Hamiltonian of a one-dimensional oscillator of frequency k™
into one of frequency k' where k, k are relatively prime integers. For the particular case k =1, the
mapping of the original phase space (x,p) onto the new one (X,5) is k to 1 and the equivalent points in
(x,p) are related by a cyclic group C, of linear canonical transformations. When formulating this
problem in Bargmann Hilbert space, the canonical transformation can be related to the conformal
transformation w = z *, which again is x to 1 and where a group C, also appears. This cyclic group
proves fundamental for the determination of representations of the conformal transformation in Bargmann
Hilbert space. To begin with, it suggests that while we can take in the original Bargmann Hilbert space a
single component function, in the new Bargmann Hilbert space we must take a k component one. In this
way we can map in a one-to-one fashion the states and operators in the old and new Bargmann Hilbert
spaces. When translating these results to ordinary Hilbert. space, we get in an unambiguous way the
quantization of the observables appearing in the equations that determine the representation of the
classical canonical transformation relating oscillators of frequencies x~! and k ~'. Furthermore, we also
get the solutions of these equations, and the resulting representation is unitary. While our discussion is
restricted to the problem mentioned above, in the concluding section we indicate our surmise for deriving

1

systematically the unitary representation in quantum mechanics of arbitrary canonical transformations.

1. INTRODUCTION

The subject of unitary representations of classical
canonical transformations has had a long history*:? yet
even today it is not fully understood. * Most physicists
are likely to dismiss the whole subject by stating that
if we have a set of new canonically conjugate variables

ﬁ:ﬁ(X,P), (l-la)

f:}?(x, P),
— _0x3%p o9xop
{xyﬁ}x,p: ax 0p -'855;‘_19 (lolb)
we can find in quantum mechanics an operator U such
that it transforms the original operators x, p into the

new ¥, p, i.e.,?
X=UxU, p=U"pU. (1.1¢)

If we choose then a basis in which, for example, the
original coordinate is diagonal, i.e.,

x|y =x"|x), (1.2)
then
(U] %) (1.3)

will be the representation of the canonical transforma-
tion (1. 1a) in this basis.

Before proceeding further a word about notation is
in order. We shall make no distinction between classical
variables such as x, p and their corresponding opera-
tors in quantum mechanics as it is either explicitly

AMember of the Instituto Nacional de Energia Nuclear and
El Colegio Nacional.
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mentioned, or it is clear from the context, when we
deal with one and when with the other. We shall use
Dirac’s notation? x’, x” for eigenvalues of the operator
x and similarly for other observables and denote by
the kets | x" >, | x” > the eigenstates of the original
coordinate x. In order to connect our results more
readily with the standard language of representation
theory, * we define U as we did in a previous paper of
ours, °i.e., we denote by U what Dirac calls U™,

Turning now our attention to (x” |U| x’) we could ask
how to determine it explicitly once (1. 1a) is given. A
case fully discussed from the earliest literature!-2
concerns the canonical transformation

;:py 7)—:—)6, (1-43)
for which
(x" Ul ) =(2m) exp(-ix'x"), (1. 4b)

when one takes units in which 7=1, For more complex
situations the inquirer is usually referred to Dirac’s
book. ?

Within certain limits, which Dirac states very
carefully, this reference, though cryptic, indicates
the procedure to be followed. More recently, Ple-
banski, ® Mello and Moshinsky® and others have indicated
how this procedure could be systematically implemented.
We shall briefly review, in the present notation, the
analysis of Ref. 3 as it shall provide the ground work
for the ideas to be developed in this paper.

First it proves convenient to define the canonical
transformations not explicitly but through the implicit
equations?®
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H(x, p) =H(X, ), (1. 5a)

Glx, p) =G(X, ) (1. 5b)
where

{H,6}, ,={H,Ck 3. (1.6)

The latter equation guarantees that when ¥, p are ob-
tained explicitly in terms of x, p from (1.5), the
Poisson bracket relation (1. 1a) is satisfied.?

As the relations of the type (1.1c) hold for any func-
tion F(x, p) (at least so long as it can be expressed as
a power series in x, p) we have

U~F(x, p)U =F(x,P)

or
F(x, p)U =UF(X, D). a.m
Then making use of (1.5) we obtain
H(x, p)U = UH(Z, B) = UH(x, p), (1.8a)
Glx, PYU=UG(%, p) =UG(x, p). (1.8b)

Taking the operator relations (1. 8) between the bra
{x"| and the ket |x’) we obtain straightforwardly®

. 1 8 " ,
H(x,?—aj)(x ol

:[H' (“”, %Ti‘)] G fulx, (1.9a)
E(x", %%) (x" U] x")
:[GT (x' li)]*/x” lulx’y (1.9b)
yi 89(' A b o

where H', G' stand for the Hermitian conjugates of the
operators H, G;* indicates complex conjugation, and
we recall that in the representation where the original
coordinate is diagonal x can be replaced by the ¢c-num-
ber x', and p by —i(8/3x"). Thus we have a set of two
partial differential equations in ¥’, x” to determine

{(x" U |x") which we further restrict by the unitary con-
dition

f <A’"’U)X'"> dx™ <X"' ]U’f)xl>
Ul [ ] e

=5{x" - «"). (1.10)

Among the more interesting problems involved in
canonical transformations are those in which H(x, p)
and H(X,P) are two Hermitian Hamiltonians. The canon-
ical transformation defined implicitly by (1.5) is then
the one that takes us from the Hamiltonian H to H.

To solve Egs. (1.9) we can then consider the eigen-
functions of A and H s

H <x 1158;) 6, (¢) =E,$,(x'), (1. 11a)

H (x %5%—) &, (x"V=E, §(x"). (1.11b)

As these eigenfunctions form a complete set we can
then write
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(x" | le’>=§anv$n(x”)¢j ('),

where the summation is replaced by an integration if
the eigenvalues E,, E, in (1.11) have a continuous

spectrum. The equations (1.9) and (1. 10) can then be
used to determine q,, up to a constant phase factor.?

(1.12)

So far the program has been implemented for specific
examples when H and H have the same spectrum, i.e.,
E,=E, when v=n. This is also a restriction that Dirac
uses in relation with his original variables x, p and
new ones ¥, p though he imposes the further condition
that all of them have a continuous spectrum going from
- {0 +%, Under the above restriction Eq. (1.9a),
which leads to the relation

anv(Ev"En)ZO’ (1.13)
has the solution
anv:bn’sn,m (1. 14)

where in turn b, is fully determined by (1.9b) and
(1.10).3

What happens though when the spectra of H and H are
not the same? If seems then that there are many subtle
points when we try to find the unitary representation of
the classical canonical transformation defined implicitly
by the relations (1.5). In this paper we shall not attempt
to solve this problem in general, but rather to clarify
its structure through the study of a single problem:

The canonical transformation that maps a harmonic
oscillator whose frequency has an arbitrary rational
value onto a harmonic oscillator of unit frequency or,
equivalently, a canonical transformation that maps onto
each other oscillators of frequencies k™, k™! where

K, k are relatively prime integers.

In the next section we shall discuss this problem
classically and point out that even there difficulties
arise, as the above canonical transformation does not
imply a one to one mapping of the two phase spaces,
i.e., it is not bijeclive. This difficulty is compounded
in quantum mechanics as the translation from Eq. (1.5)
to the corresponding operator relations (1.8) or (1.9)
is ambiguous.

To be able to overcome these ambiguities we take, in
Sec. 3,4,5, a long detour thorugh the conformal map-
ping w = 2* and its implications in Hilbert spaces of
analytic functions.” With the help of this analysis we
can return in Sec, 6 to the appropriate formulation
and solution of Eq. (1.9) when we have the canonical
transformation that maps an oscillator frequency «™'
onto one of unit frequency or, more generally, when we
pass from the frequency x™ to k1, In the final section
we then discuss the implications that this specific
problem has for the determination of unitary represen-
tations in quantum mechanics of arbitrary classical
canonical transformations,

2. THE CLASSICAL CANONICAL TRANSFORMATION
RELATING AN OSCILLATOR OF RATIONAL
FREQUENCY WITH ONE OF UNIT FREQUENCY.
SUMMARY OF THE FOLLOWING ANALYSIS

Let us consider the Hamiltonians of two oscillators,
one of them in the original variables x, p and the other
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in the new ones %, p. The first one will have a rational
frequency which we denote by

(R/k),

where k, x are relatively prime integers, and the sec-
ond one has frequency 1. We take units in which % and
the mass of the oscillator are 1 and thus the Hamiltonian
of the first oscillator takes the form

(2.1)

3o + (/K2 (2.2)
By the simple dilatation

x = (k/R)x, p—~(k/x)P, (2.3)
the above Hamiltonian becomes

(k/K) 2(p* + %), (2.4)

while the one of unit frequency in terms of x, P has
the form

(PP +72). (2.5)
The functions H(x, p), ﬁ()?, P) discussed in the Intro-
duction can then be defined for this problem as
H(x, p) = 5 k7Hp? + x7),
H(%,p) = s£1(P° + %),

Obviously the canonical transformation that takes

H into H will be the one, up to the dilatation (2.3),

that takes the Hamiltonian of an oscillator of frequency
k/k into one of unit frequency. To find this canonical
transformation explicltly we introduce the classical
annihilation and creation variables as

(2.6)

n= (e =ip), E=yt = (e tip),
_ 1 .
Tl~\[2( "Zﬁ)’

We then define the functions G(x, p), G(x,p) discussed
in the Introduction as

G(x, p) =k V2 (ng)r-02/2px

E:ﬁ*:\f—;miﬁ)o 2.7)

G(%, p) =k 2 [E) -0/, (2. 8a)
while from (2.7) and (2. 6) we have
H(x,p)=k"nt, H(E,P)=k"RE. (2. 8b)
We now proceed to show that Eq. (1.5), i.e., in this
case
KE =R, (2.92)
- 1 (2.9b)

K172(n£)(x==1)7—2 :k172<ﬁ§u¢=1)7‘2 ’
define implicitly a canonical transformation. For this
we note that from (2. 7)—(2.9),

(0 _MIG)
an 8f " @E an) " O
As a simijlar relation holds for {H G}x 3 we see from
G(x, p)._G(x D) that (1, 6) is satisfied and this is a

necessary and sufficient condition® for (2.9) to define
a canonical transformation.

{H,61, (2. 10)

We note immediately that the translation of the clas-
sical relations (2.9) to the operator form (1. 8) or
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(1. 9) is not well defined. To begin with, as in quantum
mechanics, &, 7 of (2.7) have the commutation rule
[ £,m)=1, the expression

(1+omt -0kn, o real number, (2.11)

which classically is equivalent to £, in quantum me-
chanics becomes n¢ - ¢. Thus the equation of type
(1.9a) resulting from (2. 9a) seems to have an arbitrary
constant in it, The situation is considerably more
complex when we wish to determine the equation of

the type (1.9b) resulting from (2.9b), as the nf in the
denominator and 7* in the numerator do not commute,
and thus there is a considerable degree of arbitrariness
when we try to write down this equation. Therefore,
even in the simple problem we are discussing in this
paper the explicit determination of the Eq. (1.9) seems
to present complications and thus merits a very careful
analysis,

As a first step in this analysis we shall discuss the
characteristics of the classical canonical transforma-
tion when £=1. We then have

=it 2 g iz (2.12a)
e 2. 120)

We can think of 5, 7j, defined by (2. 7) in terms of the
real x,p and ¥, P, as complex variables. We note im-
mediately from (2. 12) that when 7 traces a circular
arc, in its complex plane, of angle (27/x), 7 traces
a full circle and thus the mapping relating 7 with 7,

n*, is not one to one. Therefore, while (2. 12) locally
defines a canonical transformation this is no longer
true over the whole phase space. In fact we immediate-
ly see from (2.12) that 7 remains invariant when we
replace 1 by [nexp(i2ng/x)), ¢=0,1, ..., k-1 and
thus & =7* by [ £ exp(-i2rg/k)]. Thus there is an am-
biguity as to which points x, p in the original phase
space are mapped on a given point X, p in the new phase
space. The points in x, p are related by the cyclic group
(. of linear canonical transformations

x —xcos{2nq/k) + p sin(2rq/«),

P —~—xsin(2rq/x) + p cos(2rq/x). {2.13)
The group (", will play a fundamental role in the
following developments as it will provide a natural and
well-defined transition from the relations (2,9) that
give the canonical transformation, to the Eq. (1.9) that
determine its unitary representation. To display this
role in a clearer fashion we shall discuss in the fol-
lowing section the problem of the conformal trans-
formation® w=2* and its unitary representation. This
representation will be given in Hilbert spaces of
analytic functions with measures differing from the
Bargmann measure.’ In section 4 we then construct
the corresponding mapping for two spaces both of which
have the original Bargmann measure.” We next see in
section 5 how the operators in these spaces are related,
thus paving the way for writing down in section 6, in a
well defined manner, the operator form of the equa-
tions (2.9). We then immediately find out the unitary
representation in quantum mechanics of the classical
canonical transformation that maps an oseillator of
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frequency «™* onto an oscillator of unit frequency and
later extend the analysis to the case when the two os-
cillators have frequencies k™, %™, Finally in the con-
cluding section we discuss the implications of the pre-
sent analysis for the unitary representation of arbitrary
canonical transformations,

3. THE CONFORMAL MAPPING w = z*

Let us consider two complex variables z, w related
by

w=2z*, K integer, (8.1)
and inquire about the mapping of analytic functions
&) =33a,2, (3.2)

expressed by the above series (which we assume ab-
solutely convergent) in the variable z onto anralytic
functions in the variable w.

We first note that if we replace
(3.3)

we still get the same value for w. Thus there exists a
cyclic group of transformations CK which gives the «
points in the z plane that are mapped onto a single point
in the w plane. As C,‘ is Abelian, its irreducible re-
presentations are one-dimensional and in fact can be
given by®

z ~zel%, @, =(2nq/k),

DMe )=exp(irg), r=0,1,...,x~1. (3.4)

We can then decompose f(z) in terms of components
@), »=0,1,..., k~1 that are irreducible under the
group C,, where the latter are given by®

Mzy= /91 (z)= K'{Z? D*((pq)f(ze"‘%)

= K-IKZ-: exp{ire,) f(ze™%), (3.5)

with the 7, [defined by (3.5)] being the projection oper-
ator.

Returning to the expression (3. 2) for f(z) we note
that we can write

v=xmodk or v=pKk+x, n=0,1,2, ..., (3.6)
and from (3.5) we obtain
M) :i Aar 24 =2 FMz%). (3.7)
=0
Thus we finally have
K=l
_ PN
f(2) _Z;Oz FMw), (3.8)

where the FMw) are analytic functions of w.

Now we come to the crucial point in our discussion.
What is the function corresponding to f(2z) in the w
plane? At first sight one could say

k=1
fr ™y =2 w* O FNw). (3.9)
We note though that w*/*’ is only defined if instead of
the w complex plane we speak of a Riemann surface
with ¥ sheets joined in the usual fashion.® We can
enumerate the sheets by an index 0=0,1,..., x~1
and thus the f(*™) of (3.9) corresponds to the value of
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the function on the sheet ¢ =0, while on the o** sheet
we have

Flur™) :KZ; wt® exp(i2mo /) FMw). (3.10)

We can then speak, as is usually done in the litera-
ture, ® of f(z) as mapped on the k sheets of a Riemann
surface in the w plane. From the standpoint of later
developments in this paper, it is more appropriate to
think of f(z) as being mapped onto the ¥ component vec-
tor

Fo(w)

FYw)

Flw)= ° (3.11)

Fx-l(w)

defined on a single sheet complex w plane. We note that
the components of F(w) are all analytic functions of w.
Furthermore if f(z) is given we have

FMw)=[ 2P f(2)],. ot :@ Ay par™, (3.12)

where 7, is the projection operator (3.5), Inversely if
F(w) is given, f(z) is determined by (3. 8). Thus we
have a one to one mapping between f(z) and ¥ ().

Once the mapping between f(2) and F(w) has been
established we can analyze the way that operators
acting on f(z) translate into those acting on F(w) and
vice versa,

Let us look first into the operator z that transforms
f(2) into g(z) given by

#(2)=2f(2). (3.13)
From (3. 12) the corresponding G*(w) is given by
G*w) = [272P8(2) Lpaun—s

k=1
:i Apgara W
w=0
B wFYw), if A=0,
*{F"l(w), if A=1,2,..., «=1. (3. 14)

We can express relation (3. 14) as a matrix operator
acting on the vector F(w) and thus to the operator z
there corresponds the x X« matrix

00...... 0w
10...... 00

z <> (3.15)
00...... 10

A similar analysis allows us to obtain the mappings
of different operators from 2z space to w space and
vice versa, Among the latter it is trivial to show that
wl, where I is the unit ¥ Xx matrix, maps onto z*. We
shall not carry these mappings of operators in detail
here, as in Sec. 5 we obtain the mappings required,
when we carry a transformation more directly related
to (2.9) than the w =2 of this section.
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In the next section we shall discuss a unitary repre-
sentation of the transformation w=2z* on Hilbert spaces
of analytic functions.

4, THE UNITARY REPRESENTATIONS OF THE
MAPPING w = 2z«

It is well known since the pioneering work of
Bargmann’ that wavefunctions y(x') [or ¢(x')] in an
ordinary Hilbert space can be mapped onto analytic
functions f(z) [or g(2)] in such a way that scalar pro-
ducts are preserved, i.e.,

T2 e e )ax' = [ @) *f(2)dr(2), (4.1a)
where d7(z) is the Bargmann measure
dr(2) =n"'exp(-2zz*)dudv, z=u-+1iv, (4. 1b)

and the integration takes place over the full complex

plane, i.e., —© su, v<=, Bargmann’ then also showed

that the following correlation existed between the opera-

tors in ordinary and Bargmann Hilbert space,
d

<>z, §E<—>—

) (4.2)

where 7, £, given classically by (2.7), take the fol-
lowing operator form in ordinary Hilbert space,

1/, @ 1/,, 8 )
71‘—’72‘(9( —'a7>, E=7§<x +W .
We proceed now to consider another complex plane
w related to the previous one by w= z* and define in it
a scalar product® involving the vectors G(w) and F(w)
that corresponds to the one between g(2z) and f(2) in the
right-hand side of (4. 1a). For this purpose we recall
that from (3, 8) we have

(o) =55 2Nz,

(4.3)

(4.4)
and thus -
(g./)
= [ [g(2)¥f(2)d(z)
=5 [I6M @ e 2dra). (4.5)

But as F*(z*) is an analytic function of z* and further-

more’
J (2" ) zvdr(z)=v! 5 (4.6)

we conclude that integral (4.5) vanishes unless X' =2
and thus

vy us

=1
(&) =g, [ [6*a) *FXw)doX(w), (4.7
where from the relation w=2* the measure do*(w) in
w space becomes’
doMw) = (mi )™ (* w)! D) /x-11

x expl —(w*w¥ \didy, w=1u+ 7. (4. 8)

Introducing the vector F(w) of (3. 11) whose compon-

ents are FMw), »=0,1,..., k-1 and defining a dia-
gonal matrix measure
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[do(w) 0 0 j
0 do'(w) ...... 0
dow)=| ol @
L 0 0 ... do*"}(w) |
with do*(w) given by (4. 8) we can finally write
(g, N= [ [G(w)]'do(w)F(w) = (G, F). (4. 10)

We now wish to find a k~dimensional column vector
A(w, z*) of components

A%w, 2*)
Al 29 =| A2 (4.11)
A“'l(w,z*)
such that
F(w)= [ A(w, 2¥)d7(2) f(2), (4.12)
f(2) = [ [Alw, 2%)]'dO(w)F (w). (4.13)

The A(w, 2*) will give us a unitary representation of
the conformal mapping w ==z*,

To determine A(w, 2*) we shall only need to take into
account the cyclic group CK in the z plane which gives
the points (3. 3) that are mapped on a single point in the
w plane,

We consider the unit element in Bargmann Hilbert
space,” i.e.,

exp(z’z*), (4.14)
which takes a function f(2) into f(2*), i.e.,
f(z’):f exp(z'z*) flz)dr(z). (4.15)

We then proceed to extract from this unit element the
desired A*w, z*) in a way similar to the one in which
we extracted FNw) from f(z) in (3. 12). We decompose
exp(z’z*) into its irreducible parts x=0,1,..., k-1
associated with the C, group, by applying 7} of the type
(3.5) to the 2’ variable and thus define

AMw, 2%)

=[2"P exp(2’2*)], . k1

K=l
={2"M1 2 exp(ing,) explz” exp(-ig,) 2* . et
_i wu(z*)umx

AR OTESV I (4.16)

From (4.8), (4.12), and (4. 16), we immediately see
that if we write

k=1
—_ +A
f(Z) ‘g(; u.Z=:0 aumk‘z‘m ’ (4e 17)
it gives for FX(w) the expression
FMw)=2a,,w", (4.18)
®=0

as required in (3. 12),

Inversely we would like to have
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k=1

7@ = [ T4 w, 2] do* )P}, (4.19)
=0

Substituting the A*w, z*) of (4.16) and the F*w) of

(4.18) we get back (4.17) when we make use of the fact

that®

[ w*# do(ww? = (L +1)! By (4. 20)

Thus we have determined the vector A(w, 2*) that re-
lates f(z) and F(w), making use only of the fact that
there exists a cyclic group C, that gives the x points
in the z space that are mapped on a single one in the
w space.

So far we have determined the unitary representation
of the conformal transformation « = z* when in the z
space we have the Bargmann measure and in the w
space the measure is given by (4.9). In the next section
we introduce a new complex variable ¥ instead of w,
keeping states described by x-dimensional vectors
F(2), but where now we have a Bargmann measure for
each component. The reason for doing this is twofold.
On one hand, the classical canonical transformation
defined by Eq. (2.12) is real while the conformal map-
ping w=z" was shown in Ref. 5 to lead to a complex
extension of a canonical transformation. On the other
hand, Wolf® has shown that for linear canonical trans-
formations, a complex extension leads to a change of
measure while for a real canonical transformation the
measure remains unchanged. We may hope therefore
that by combining the unitary representation we obtained
in this section, with the unitary mapping that takes us
from a space of measure do*(w) to one with the Barg-
mann measure dr{Z), we learn something about the re-
presentation of the real canonical transformation (2. 12).
In Sec. 6 we shall find that this hope is confirmed.

5. AUNITARY MAPPING BETWEEN SPACES WITH
BARGMANN MEASURES

In this section we shall proceed to discuss the unitary
mapping that relates a Hilbert space associated with
the complex variable w, with the unusual measure
do (w) introduced in the previous section, with a Hilbert
space associated with a complex variable Z for which
we assume a standard Bargmann measure.’ One rea-
son for this development is that only in the latter space
the oscillator has the simple structure that raising or
lowering operators corresponds to multiplication by Z
or to the differentiations d/dz. We shall construct this
mapping for each component F*(x¢), »=0,1,..., k-1
of the vector F(w) and thus obtain a diagonal matrix
valued kernel that takes F(w) into F(7), where the latter
is also a k-dimensional vector for which the measure
is of the Bargmann type multiplied by a unit x X« ma-
frix I. We can then readily combine the mapping thus
obtained with the one of the previous section and study
the transformation of the operators z, d/dz, and
z(d/dz) (the latter corresponding to the number opera-
tor) onto the space associated with the complex variable
Z. Conversely we shall also start with the operators
ZI, {d/dZ), and Zd/dZ [, and see their form in the
original Hilbert space associated with the complex
variable z. These developments will allow us to re-
turn, in Sec. 6, to the ordinary Hilbert spaces associat-
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ed with the variables x’ and x”. We will then see the
form that equations (1.9) must take when they are as-
sociated with the classical canonical transformation
(2.12).

We note that the functions [(rk +2)! /24" form an
orthonormal basis® for square integrable analytic
functions under the measure do™w) defined in (4. 8),
while (12!)™/22" forms a similar basis in Bargmann
Hilbert space.” Thus the kernel

ME ok o ZWw*) )
BMZ, w )—_nzm (CTESSIAREE A=0,1,..., k-1,
(5. 1)

provides us with a unitary mapping between the two
spaces. Let us now define the diagonal matrix kernel

Bz, w*) 0o ..., 0
0 BYz,w*) ...... 0
B= ’ (5'2)
0 o ...... B¢}z, w*)

which obviously provides us with a unitary mapping
between the space of vector valued functions ¥(w) de~
fined in the previous section and the space of vector
valued functions F(Z) with a measure d7(Z)I, where d7(z)
is given by (4. 1b) and I is the kX ¥ unit matrix. We thus
have the relations

F(2) = [ B(Z, w* )do(w)F(w), (5.3a)

F(w) = [ [B(Z, w*)]'dr(DF(Z),

between the k¥ component functions in the two spaces.

(5. 3b)

We now combine this transformation with the A(w, z*)
of (4.11), (4.16) that takes us from the space associated
with the complex variable z to one associated with i,
i.e.,

C(Z, z¥)= fIB(Z, w¥Yde (w)A(w, z*),

and thus obtain for the components C*z,z*), A =0,1,
...,k~1, of the k-dimensional column vector C(Z, z*),
the expression

(5.4)

- d Zn(z*)nxﬂ
C (z,z*):n=0 al(nk + 72 -
This kernel provides us with a unitary mapping between
a Bargmann Hilbert space of analytic functions f{(z)
and a Hilbert space of vector valued functions F(Z) each
of whose components is again defined in a Bargmann
Hilbert space.

(5.5)

Ve now turn our attention to the implications that the
wnitary mapping (5. 4), (5.5) has for the transformation
of operators from the z space to Z space and vice versa.
We start with the operator z which in the space as-
sociated with the complex variable z becomes the k> x
matrix kernel

D(z,7%) = | C(7, 29)z[C(Z', 29)['d7(2)
i THE W (W 1Y

nh T2

|, (5.6)

' =0

X5

kx4l
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where the elements of the matrix on the right-hand
side of (5. 6), characterized by \,X'=0,1,...,4-1,
are derived with the help of (4. 6) and (5. 5). We then
immediately see that this matrix can also be written
as

D(Z, 77*)
0 0 oot 0 K72z |
1/2
(Kz_—d('—l+1> 0 ...... 0 0
4 enl*
...... e

i 0 0 ...... (KZE:'FK—I) 0 ]

5.7)

and as exp(ZZ'*) is a reproducing kernel” in Bargmann
Hilbert space, we arrive at the conclusion that to the
operator z there corresponds, in the space associated
with the complex variable Z, the matrix operator

[~ 0 0 voveue 0 K2z
1/2
d
e (‘Zdz”) 0 ...... 0 0 '
d 1/2
0 0 ...... (xz—=+x—1> 0
[ dz .

We have just to replace z in (5. 6) by d/dz to get in
an entirely similar fashion

S d 1/
0 (KZE+1> ...... 0
d . veee eraeas
> 1z
dz 0 0 ... (Kfﬁci:+K—1>
o
72 0
,I: dz_ O ...... 0 __i

which could also be obtained by remembering that in
Bargmann Hilbert space’

d zt d

4 & S
dz’

=, (5.10)

and thus when we take the Hermitian conjugate of (5. 8)
we have (5.9). Finally combining (5. 8) and (5.9) we
obtain that the image of the number operator zd/dz is
given by

_d
}‘ZE;_«— 0o  ...... 0
P 0 K?;i?(_z+l ...... 0
S - (5.11)
d
0 o ... F— -
| szz +xk-1

We now turn our attention to the operators ZI and
(d/dz)I and look at the operators that correspond to
them in the Hilbert space associated with the complex
variable z. For this we need the scalar kernel
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)" Z2C(Z, 2 ¥)d7(Z)

k=1 i Z(mnmx( TRy (4 1)1 /2
=5 w0 {{(n+ D + Al (nx + 1) 1}V2

= ‘: Z(d/dZ)—X I/ZZK pleur*’

(5.12)

K
N K [e(d/dz) - v]

v=0
where again we used (4. 6) and (5. 5) to obtain the inter-
mediate formula in (5. 12) and the final result follows
from the fact that the projection operator 7,, defined
by (3.5), when applied to exp(zz’'*), gives

Z7K +)¢(21*)m¢+>m

P, exp(zz’ *)= i (5.13)

= T ES S
Again as exp(zz’*) is the reproducing kernel in the
Bargmann Hilbert associated with the variable z, we
conclude that we have the correspondence

[t z(d/dz) - «
Lo ;{@[z(d/dz)—v]] P

where, to stress the fact that zZ acts on « component
vectors, we multiply it by the unit ¥ X« matrix, We wish
to point out that both z* and z(d/dz) = kz*(d/dz*) are
invariant under the group C,‘ of (3. 3) and thus they com-
mute with the operator 7, of (3.5) which projects ir-
reducible representations of this group. Thus we also
see that to Z/ there corresponds

[ d/dz) - 1/2
Mo P (A
i &/ *(Kvg) Hdjd)-0))

which will be a form particularly useful in the discussion
of the next section,

z/ (5.14a)

(5. 14b)

In a similar fashion when we replace Z by d/dZ in
(5.12), we have that

z(d/dz) - x

. " 1/2
I =
I <> Z ph dz¢ ‘:ICK:O[Z(({/(lz) - 1}]:{ ’

which could also be obtained by taking the Hermitian
conjugate of (5. 14a) and using (5. 10). Finally combining
(5.14) and (5. 15) we have

~d 11 d

L je—s> (-5 L
Za’z'[ Z;)K( I X)/Dke
The projector /, in this expression appears but once
as it commutes with the remaining terms and is idem-
potent. Again we note that by the same considerations
that follow (5. 14a) we can also write

(5.15)

(5. 186a)

_d L 1 d
—_ o= RO
ZdZIé_}é)/"K (Zdz \,>. (5. 16b)
The commutation relations
d
d-z,z:\:l, (5.172.)
d
=1 ?1] =I (5.17b)

imply corresponding relations for the transformed
operators that may readily be verified explicitly.
Clearly in (5. 17a) we deal with an irreducible and in
(5. 17b) with a reducible (and explicitly reduced) re-
presentation of the Heisenberg algebra. Thus the stan-
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dard Heisenberg algebras in z and Z space cannot be
mapped into each other.

Having established in this chapter the mapping of
operators in the z space on the Z space and vice versa,
we are in a position to actually quantize the classical
observables that appear in the Eq. (2.12) through the
relations between 2z, d/dz and the operators 7, & that
are usual in Bargmann Hilbert space. We proceed to
carry out this program in the next section.

6. EQUATIONS THAT DETERMINE THE UNITARY
REPRESENTATION OF CANONICAL
TRANSFORMATIONS AND THEIR SOLUTION

We now return to the task, outlined in Secs. 1 and 2,
of finding the unitary representation of the canonical
transformation given implicitly by Eqs. (2.9) when
k=1, i.e., the one that takes us from an oscillator of
frequency ™, k integer, to one of unit frequency.

As mentioned in Sec. 2 the classical observables
appearing in (2. 9) translate into the quantum mechanical
operators of Egs. (1.8) or (1.9) in an ambiguous fashion.
The discussion of Secs. 3, 4, and 5 allows us though to
resolve this ambiguity in a systematic way.

To begin with the analysis of Secs. 2 and 3 suggests
that instead of a scalar unitary representation
{x"1Ulx")y we deal with a ¥ component colurnn vector

—
<xu ‘ Uoixl>1

(x" 10 1x")

(x" U1y = ' , (6.1)

L (x7 LU )]

where (x" 1U*¥’), »=0,1,..., k ~ 1 are associated with
the corresponding irreducible representations of the
cyclic group C, of linear canonical transformations
(2.13). This is in entire analogy with the C*z,2*) of
(5.5), in which the components were associated with
the irreducible representations of the group C,‘ whose
elements are the conformal transformations (3. 3).

We now turn our attention to Egs. (2.9) when k=1,
from which we see that

H(x,p)=n¢&, Glx,p)=n,

where 1, £ are given by (2.7) in terms of x, p. We thus
have from the relations (1. 8) and the operator mappings
(5. 14b), (5. 16b) the expressions

{6.2)

MEU=UL A, kimE ), (6. 32)
=0
kel nE—A 1/2
=U U *, 6.3b
nu pr[xﬁ(ng_v)} n (6. 3b)
where we made use of the correspondences
d
z2€~>7), i <« f (6.4)

from Bargmann to ordinary Hilbert space.

We note that U is a «-dimensional column vector
operator which, from the remarks following (6. 1), has
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the property that its components under the action of
the projection operator 7, become

UAP, =54, %, A=0,1,... (6.5)

Furthermore in the classical limit we assume that the
eigenvalues of the number operator n¢ become very
large and thus we can disregard any integer 1,2,...,

k -1, as compared with them. In that case, as we also
have that the sum of the projection operators is the
identity, i.e.,

K=1
pr::l,
A=0

, k=1,

(6.6)

the right-hand side of Egs. (6.3) reduces precisely to
the classical expressions on the left side of (2.9).

We have in a definite way gone from the classical
equations (2.9) when k=1, to the quantum mechanical
operator relations (6. 3). This quantization is by no
means trivial as it implies that the unitary operator U
is now a column vector whose components are bases for
irreducible representations of the cyclic group CK of
linear canonical transformations (2. 13). Furthermore
the operators associated with the classical expressions
in (2.9) quantize differently for each irreducible re-
presentation x=0,1,...,« —1 of the C, group, though
in the classical limit (i.e., when we assume that the
eigenvalues of £ »>x=0,1,...,k — 1) they have the
expected form.

It remains now to pass from Egs, (6.3), which are
the appropriate form of (1. 8) for our problem, to those
corresponding to (1.9). We must then take Egs. (6. 3)
between the bra (x” | and the ket |x’) to obtain with the
help of (1.9), (6.5), that for the component {(x" |U*|x"),

A=0,1,...,k~1 we have the equations
nngu (X" l U)L \XI>

= E (x| U K, (6.7a)
T]”(X" I UA‘ xr>

ter 1/2
BB
=& (—ng——l“ (" | UM Y, (6. 7b)
K (e - v)

where, momentarily disregarding the Dirac notation,
we have from (2, '7) that the operators appearing in
(6.7) have the form

Y L1, _a__>
”-7’5(5“) "iwz(“aw

1 E 1 a) (6.8)
] :\/—z(x —5}7,>, £ :E(X +—a-)-(—,7 .

The solution of Eqs. (6.7) is trivial as, denoting by
¢,(x') the normalized eigenstate of an harmonic oscil-
lator of unit frequency, we easily see that

(x| 0|2y = Z & (X" PE ) (6.9)

satisfies them. This result could also have been ob-
tained from CZ, z*) of (5.5) if we replaced monomials
in z,Z in Bargmann Hilbert space by harmonic oscil-
lator states in the standard manner.

We note furthermore from (6.9) that
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f(xm ’ le x")"‘(x”’ , le xr> Ax"
=2 G )9 ()

=(x"| P, #) (6.10)

is the explicit expression for the projection operator
P,, »=0,1,...,k—1, in the basis in which the original
coordinate is diagonal. Thus from (6. 6) and (6. 10) we
have that

f(x” ] UTI X" ) dx”'(x”' I U[ x’)

=5(x" - x’), (6.11a)
f(xu l Ul x”’)dx’” (X”’ thl JJ)
=I5(x" = %), (6. 11b)

where I is the k Xk unit matrix.

We can state that in a definite sense we determined
the unitary representation in quantum mechanics of the
nonlinear canonical transformation (2. 12), Before
proceeding to discuss these types of representation, let
us first generalize them to the case when we have a
canonical transformation that takes an oscillator of
frequency «™! into one of frequency k™', where « and %
are relatively prime integers. We note that this canoni-
cal transformation defined implicitly by Eq. (2.9) re-
mains invariant under the cyclic groups C, and C,
[whose elements are of the type (2.13)], acting re-
spectively on the left- and right-hand side of these
equations. Rather than use this fact to find an adequate
quantization for the observables in (2.9), we shall take
advantage of the analysis developed in this section for
the case k=1, to directly derive the unitary repre-
sentation required.

To implement the program mentioned we consider
three oscillators of frequencies k™, (xk)™!, £ given
respectively in the phase spaces (x,p), (), (%,P).
The canonical transformation that takes us from the
phase space (a:,/.) to (x, p) is then the one associated
with the passage from an oscillator of frequency k™ to
one of unit frequency., Thus its representation V is
given by a k-component column vector whose elements
are

{x" I v } x") :,:éo X" Y mpas(x"),

1=0,1,...,k-1. (6.12)

Similarly the canonical transformation that takes us
from the phase space (e, ) to (¥, p) leads to a repre-
sentation U which is a ¥ component column vector
whose elements are given by (6.9). When we want to
go from the phase space (x, p) to (X, 5), we first apply
the inverse of the canonical transformation that takes
us from (=, 4) to (x, p) and then the one from (a,/) to
(%, P). Thus the corresponding representation is given
by a rectangular « X% matrix

JUERIAAR

whose elements are characterized by the indices
A=0,1,...,k~1 for the row and I=0,1,...,k -1 for
the column, i.e.,

(6.13)
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UM =, (6.14)

From (6,9) and (6. 12) we then obtain
" | U]«
= [ " | 0| 2"ydx e | VIt )
I CHCOUSCOLNR,

=21 bopr ") Sfene(x), (6.15)
where I’, A’ are the unique solutions of the Diophantine
equations

(6.186)

with the restriction that 0 <1<k, 0 <A’ <k. The re-
duction to the single summation in the last line of (6.15)
is achieved when we notice that from the Kronecker
delta we can write

Uk+x=NE+1,

nk+x=mk+l=pkx+v, vr=0,1,... kx~1. (6.17)
In turn we can express
r=Xk+l=Uk+]}, (6.18)

giving rise to the above Diophantine equations.

Representation (6. 15) could also have been obtained
from the equations of the type (1.9) associated with the
canonical transformation (2.9). Again, the introduction
of an intermediate phase space (z,/*) in which we have
observables associated with an oscillator of frequency
(kk)?, i.e.,

H(,p) = (2R} (P +27), (6.19a)
RK

~ 1/2)@—i

Y (“"/'):(k,c)[x(lz/[ %)(;f +;/;))]](k~-,,/2 ’ (6. 19Db)

allow us to determine the equations of the type (1.9) in
a simple fashion. For this we require the canonical
transformations defined implicitly by the equations

H(X, p):H(ﬁ,f):H(/‘(,p),
Glx,9)=G (2, 4) =G (%, D),

in which the transition from x, p to ¥, p takes place
through z, 4. We are thus in a position of relating quan-
tum mechanical operators of the original x, p with those
of the final X, p and vice versa, by connecting both of
them with operators in the intermediate =, /- The latter
is already achieved in Sec. 5 as it corresponds again
to relating quantum mechanical operators when we deal
with a canonijcal transformation that maps an oscillator
of frequency «™* or k™ onto one of unit frequency. It is
thus easy to obtain the equations corresponding to (6. 7)
for a canonical transformation that takes an oscillator
of frequency k™! onto one of frequency k', We do not
write them explicitly as we already know that their
solution is given by (6.15).

(6.20)

We have found the unitary representation of the non-
bijective (i.e., not one to one onto) canonical trans-
formation (2,9). In the concluding section we discuss
the implications of this analysis for the unitary re-
presentations of arbitrary canonical transformations,
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7. CONCLUSION

The discussion of the previous sections suggests the
following steps for deriving the equations of the type
(1.8) or (1.9) that determine the unitary representations
of the classical canonical transformations defined im-
plicitly by Eqgs. (1.5).

(1) If the observables H(x, p), H(X,P), considered as
quantum mechanical operators, do not have the same
spectra, it is convenient to introduce an auxiliary ob-
servable /—/(x,/») in a corresponding phase space, (#,f),
whose spectra contains both that of H(x, p) and H(x, B).
We then can discuss the canonical transformations de-
fined implicitly by the equations

H(x, p)=H(=, N =H(%, D), (7.1a)

G(x, p) =Y (=, £)=G(X, p), (7.1b)
where

{G, Bl y={Y e, ={C, Hly 5. (1.1c)

We restrict our analysis to the unitary representation
of the canonical transformation relating =, 4 with x, p
as we face the same type of problem when we relate
x, 4 with X, p. We can later combine these two repre-
sentations to get the one associated with direct passage
from x,p to ¥, p.

This procedure was implemented explicitly in the
last section where /-/(ac,/.) was the oscillator Hamiltonian
associated with the frequency (k%) whose spectrum
contains the spectra of both H(x, p), H(X, F) which cor-
respond respectively to oscillators of frequency ™2,
koL,

(2) We surmise then that the mapping of the phase
space #, 4 onto x, p will not be one to one onto, i.e., it
will be nonbijective. In fact we expect that there will be
a group of canonical transformations (equivalent to the
C, of the oscillator problem) that provides the number
of points in the intermediate phase space «, / that map
on a single point x,p. As it remains ambiguous, up to
the transformations of this group, which is the point in
x, 4 space to which a given x, p corresponds, we shall
call this group, the ambiguity group. As shown in the
previous sections the ambiguity group is central to both
the classical and quantum mechanical problem. In par-
ticular it suggests that the operator U that corresponds
to a representation of the canonical transformation, is
a column vector each of whose components is charact-
erized by an index (the “ambiguity spin” of Plebanski’®)
which is associated with a given irreducible representa-
tion of this group.

(3) We then need to derive the quantum mechanical
operators associated with the classical observables
Hix,p), G (@,p), H(x,p), Glx,p). We expect that these
operators will act differently on states that correspond
to different irreducible representations of the ambiguity
group. The explicit determination of these operators
may be the hardest part of the problem.

In the oscillator example discussed in this paper we
took advantage of the relation between its eigenfunctions
¢,(x') and 2"/ (#!)*/? in Bargmann Hilbert space to dis-
cuss the problem in the latter. The canonical transfor-

692 J. Math. Phys., Vol. 19, No. 3, March 1978

mation whose representation we wished to determine,
could then be correlated with the conformal transfor-
mation w =z* which was the one that finally provided
the explicit form for the operators. It is clear that this
procedure cannot be followed when we are not dealing
with oscillators. It is still possible though to obtain
operators explicitly once we know the ambiguity group,
as will be shown in future publications.*?

Once the operators corresponding to //(=, /), are
available, the validity of our analysis must be tested by
checking whether in the classical limit they reduce to
the corresponding observable.

(4) When the operators mentioned above are given we
have the equations of the form (1, 8) or (1.9), which we
need to solve if we wish to obtain { x” { Ulx") explicitly.
Again the ambiguity group and its representations are
central to this objective as was shown in the present
paper for the oscillator problems. Furthermore,
after obtaining { x” | Ulx’) we must test that the
representation is unitary in the sense of Eqs. (6,11) for
the oscillator problem.

After outlining our surmise on the general procedure
to be followed for determining the unitary representa-
tion of a canonical transformation, we should stress
some points to avoid misunderstandings, To begin with
when we start with an observable H{x, p) in our original
phase space, and write the corresponding operator on
Hilbert space, the transformation U does not neces-
sarily take it into the operator obtained by standard
quantization of H(X,P), which incidentally may have a
different spectrum. What happens rather is that to the
operator associated with H(x, p) there corresponds
another one in the final Hilbert space that has the same
spectrum as illustrated by (5. 11) in Bargmann Hilbert
space. A similar result applies when we start with the
operator in the final Hilbert space that is associated
with H(%,P), i.e., its corresponding operator in the
original Hilbert space must have the same spectrum as
exemplified in (5. 16) and is not the one obtained by
standard quantization of H(x, p).

Another point of importance is that equations such as
(1. 1c) should be interpreted in the sense

X(x,p)=U"xU, (7.2)

i.e., X(x,p) is to be considered as an operator in the
original Hilbert space. Thus when the canonical trans-
formation is defined through the implicit equations
(1.5) and (1. 6), the operators relation we must have
are of the form

H(x, pY=U"H(x, p)U, (7.3a)
Gx, p) =UG(x, p)U, (7.3b)

where, as in (7.2), H(x,p) and G(x, p) are defined in the
original Hilbert space. The whole difficulty of the pro-
blem arises when we want to quantize H(x, p) and G{x, p)
unambiguously and its there where the ambiguity group
shows its full power.

We also wish to stress that the unitary representation
of canonical transformations does not necessarily lead
to finite dimensional rectangular matrices as in (6.13)
and (6. 14). A simple example occurs when we map an
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oscillator of frequency V2 onto one of unit frequency.
As V2 can be approximated by a ratio k/x, where k and
K are ever increasing relatively prime integers, this
will lead to ambiguity groups C,, C, that become C..

Finally we wish to remark on an analogy between
canonical transformations and conformal transforma-
tions. The former are defined on a two-dimensional
phase space while the latter are given on a two-dimen-
sional complex plane. The structure of the complex
plane was at first not fully understood even by mathe~
maticians of the early nineteenth century who derived
50 many theorems of analysis connected with it. This
structure became much deeper through the work of
Riemann who introduced the fundamental concept of
Riemann surface, ® later refined by Klein and Weyl, *

In the phase space plane we seem to be still at the
pre-Riemann stage waiting for a deeper insight, such
as the one initiated in the work of Souriau,!® that will
allow us to understand it more fully. Once this is
achieved we may be able to implement the phrase of
Souriau at the 1975 Bonn meeting on geometrical
quantization'* which, freely reconstructed from mem-
ory, stated the following: “Physicists assume that the
representation of canonical transformations in quantum
mechanics is fully discussed in Dirac’s book, while
mathematicians think that with luck and great effort
they may understand the subject in ten years.”
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New va.lriational bounds are derived on the generalized polarizabilities of a quantum-mechanical system,
for arbitrary complex frequencies £ = v+ iw and two different perturbations u and v. No power of the
Hamiitonian A higher than #? is involved in the bounding functionals. For a certain range of v-values,
upper and lower bounding functionals are obtained which contain merely a single trial vector but also
intltoci.uce an inverse operator like 2 ~'. This impractical feature can be avoided with a subsidiary
variational principle, leading to bivariational upper and lower bounds. Explicit bivariational bounds are
also derived which are valid for all values of {. Both theoretical and practical aspects of the bounds are

discussed.

1. INTRODUCTION

Let a quantum-mechanical system be described by a
self-adjoint Hamiltonian operator % in a complex
Hilbert space #/, and suppose that # possesses a
complete set of orthonormal eigenvectors {6,} with
corresponding energy eigenvalues {Ek} If the system is
in a state 6, its dynamic polarizability «(Z) at complex
frequency {=v +iw associated with a perturbation « can
be defined as

a(0)=B&) +B(= ©), 1.1
where
BE)=Re2J(E, - E_+ )" (ub,,6,)(6,,ub,), (1.2)
En

the summation being over all states different from 6.
The notation { , ) denotes the complex inner product,
so that for all & and ¥ in / and complex numbers s
we have

(?,‘l’>:<\l‘,¢>, (s‘b,‘l‘>:§<¢,‘l’>,

(&,s¥)=s(d,¥), 1.3)

a bar denoting complex conjugate. Previous authors
[see, for example, Refs, 1—-8 and 25—27] have
presented bounding variational functionals on «(v)

or a(iw), the dynamic polarizabilities when ¢ is wholly
real or wholly imaginary. Often there has been a
restriction to real # and real 6, . With w+0, shortcom-
ings of many of these bounding functionals have been
the high powers of % involved, and a multiplicative
factor of w™' which is unfortunate for small w,

Expressions similar to that in (1.2}, but with inner
products {v6,, 6,){8,,u6,) involving different perturba-
tions u and v, define quantities arising, for example,
in theories of optical rotatary power® and nuclear-
magnetic shielding and chemical shifts.*®'* Such more
general expressions can also arise in double perturba-
tion theory.'? With generalizations such as this in mind,
as well as the desirability of admitting arbitrary com-
plex frequencies, perturbations, and unperturbed
states, we show how to derive upper and lower bound-
ing variational functionals on the quantity

2Sponsored by the United States Army under Contract No,
DAAG29-75~C~0024, and by a Grant from the University of
Wisconsin-Madison Graduate School.

®On leave from Bradiord University, England.
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Z(f,g;:5) =2 Re’#z (B, -E,+0r'(g,0,X{0,, /). (1.4)
n

No separate consideration is necessary for quantities

defined as imaginary parts of summations like that in

(1.4), for g can merely be replaced by - ig if necessary.

Without significant loss of generality, the arbitrary

complex vectors f and g are taken as members of the

reduced Hilbert space /#/, C#/, containing all vectors

in // which are orthogonal to ¢ , i.e.,

gl =ldlecH, ($,6,)=0}% (1.5)
Apart from their intrinsic theoretical interest,
bounding variational functionals can in principle lead
(with suitably artificial choice of trial vector) to
bounds on unknown quantities in terms of certain known
quantities, like sum rules or moments.*" However, if
they are to be a viable practical tool, bounding func-
tionals must not present exceptionally severe problems
of evaluation when reasonable trial vectors are
employed. It is for this reason that we do not much
concern ourselves with functionals which involve powers
of the operator /@ higher than the second.

2. ABIVARIATIONAL APPROXIMATION TO Z

Variational approaches to the task of bounding Z
stem from its alternative but equivalent specification
in terms of the solution-vector ¢ of the equation in //,

(h—E +0o=f, &,fcH,. (2.1)
This is simply
Z(f,g:8)=2Re(g,0)=(g,¢) +(d,4). (2.2)

Setting ¢ =v +iw (with v and w real) and defining for
convenience

H=h-E_+v, (2.3)
Eq. (2.1) is

Ad=f, &,f<H,, (2.4)
with

A=H+iw, (2.5)

This decomposition of the linear operator 4 as the sum
of a self-adjoint part H and a skew-self-adjoint part

iw is important for the establishment of the bounds in
Sec. 3.
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Along with equation (2.4) we consider the auxiliary
equation

Ay=g, ¥,g€H,, (2.6)
where

A¥=H —jw (2.7
is the Hilbert-space adjoint of A, We note that

(t,g)=(0,A%D) =(A9,9) ={/,¥), (2.8)
so that we can express Z in the form

Z(f,g:8) =g, ¢) +{f,¥) (2.9

in terms of the solution vectors ¢ and ¢ of Eqs. (2.4)
and (2.6),

Associated with this pair of equations is the bivaria-
tional approximation to (g, ¢) given by

R(W,‘I)):—(‘I’,A4>> +<\Il,f> +<g’<b>;

Y. det, (2.10)

with the trial vector ¥ playing the role of a kind of
Lagrange multiplier. In terms of the difference vectors

Sp=¥ -y cH, bo=0-9¢ €, (2.11)
we have the relation
R(Y,®)=(g,¢) -0y, Ad¢). (2.12)
The complex conjugate of R(¥,®) is
RW,0)=~(d, A% ) +(&,g) +{f,¥) (2.13)
=(f,¥)~(0¢, 4*by), (2.14)

which is a bivariational approximation to {f,¢) (or
{ ¢,g)). Thus, by addition, the real functional

JW,8)=R¥,d)+R(¥,d)
:—(\I/,AQ))—<{),A*‘II>+<\I‘,f>+<f,‘1f>

+{g,2)+{®,8) (2.15)
is a bivariational approximation to
J@,0)=(g,¢) +{f,¥)=2(f,8¢) (2.16)
with the property
JW,@)=2Z(f,g;8) -(0Y, Adp) - (O¢, A¥6y). (2.17)

3. MIXED VARIATIONAL BOUNDS ON Z

In the event that H (the self-adjoint part of 4) is a
positive operator, with an inverse H™, it is possible
to construct two special cases of the bivariational
functional J(¥, &) which provide complementary (upper
and lower) variational bounds on Z(f,g;¢). To do this,
we think in terms of the “mixed” vectors

X =2+ Uy, (3.1)

y=Ag - Uy, (3.2)
where the scalar multipliers X and ¢ are real and
satisfy

=1, (3.3)

Combining Eqs. {(2.4) and (2. 6), we see that x and y
are the solution vectors of the simultaneous equations
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Hx+iwy=M+pug=p (say) (3.4)
and

Hy +iwx=Xf - ug=gq (say). (3.5)
If we now choose trial vectors

X=X + p¥, (3.6)

Y= - u¥ (3.7
and let

bx=X-x=2A0¢ + udy, (3.8)

Sy=Y —yp=rb¢ - uby, (3.9)

we find that, using (3.3),
JW,8)=I(X,Y)=-(X,HX) +(Y,HY) - (X,iwY)
+(Y,iwX) +{X,p) +{p,X) -(V,q)

-{g,Y) (3.10)
and
X, VY=Z(f,g:8) - {bx,(Hbx + iwby))
+( 6y, (HOoy +iwbx)). (3.11)
Accordingly, if the trial vectors X and ¥ are
constrained to satisfy the equation
HX +iwY=p (3.12)
in line with (3.4), so that
Hbx +iwdy =0, (3.13)

it follows that the resulting functional 7,(X, Y) has the

property
I(X,Y)=Z(f,g:8) +( 0y, (H+ W’ H")oyp), {3.14)

and is thus a variational upper bound on Z. Similarly, if

HY +iwX =g, (3.15)
in line with (3. 5), so that
Hoy +iwbx =0, (3.16)

it follows that the resulting function I_(X,Y) has the
property

I(X,Y)=Z(f,g:t) - { 6x,(H + @*H™)bx ), (3.17)
and is thus a variational lower bound on Z.

In terms of an arbitrary trial vector Y, we have

LX,V)=IHYp -iwY),Y)=K,(Y) say, (3.18)

with
K(YY=(Y,HY) +{(p —iwY),H(p - iwY))

~(Y,q)~(q,Y). (3.19)
Similarly,
LX,Y)=I(X,H g - iwX))=K_(X) say, (3.20)
with
K(X)=-(X,HX) -((g = iwX),H g ~ iwX))

+H{X,p) +H(p,X). (3.21)

Thus we obtain the complementary upper and lower
variational bounds
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K (X)<K (x)=Z(f,g:0)=K,() <K, (Y), (3.22)

with the bounding functionals each depending on a single
“mixed” complex vector. Hence we call them “mixed”
variational bounds. It is a straightforward matter to
optimize the functionals with respect to parameters
multiplying the trial vectors, and if H is real there is
separation of contributions from the real and imaginary
parts of the trial vectors. The ratio A;u is also a
disposable parameter,

These mixed variational bounds hold good whenever

E,-E +v>0, n#0, (3.23)

E, being the lowest energy eigenvalue of . In the case
n=0, they hold whenever

E —E,+v>0, (3.24)

E, being the closest eigenvalue to E,, since /, does not
contain ¢,. If £, is degenerate, then E, =E,. Given
that (3.23) or (3.24) holds, we have

(@,(h—E +1)®)=(®,H)=b{D,%), b>0, (3.25)
for all @ €/, with
b=E,-E,+v, n#0, b=E, -E;+v, n=0, (3.26)

1t follows from (3.25) that H is positive, and since it is
bounded below away from zero the inverse operator H™
exists with domain the whole of //,..

The idea of introducing a mixture of equations like
(2.4) and (2. 6) in order to obtain bounds has been
exploited for dissipative systems in real spaces by
Collins®®: see also Herrera.'*' The bivariational
functional (X, Y) shows the saddle-type dependence
on X and Y which is appropriate for complementary
bounds, ***"

4. AVOIDANCE OF H™'; IMPLICIT BIVARIATIONAL
BOUNDS

A practical disadvantage of the bounding functionals
K,(Y) and K_(X) is that they involve the inverse H™*,
which only in elementary cases is likely to have a
representation simple enough to permit the evaluation
of the relevant inner products. One way of avoiding
H™' in K, (Y) is to write K, as a functional of X via (3.12)
giving
K Y (X)) =I(X, (i/w)HX ~p)) = 1/w?) ((HX - p),HHX - p)

+<‘¥;H‘Y> - (l/w)<(HX‘p)aQ>

+(i/w){q, (HX = p)). (4.1)

Similarly,
KAX(YV) =G/ w)HY —¢),Y)
= - (1/w Y (HY ~q),HHY —q)) =(Y,HY)
+ (/) ((HY = q),p) = (i/w){p, HY —q)). (4.2)

However, these forms involve H® (as well as factors of
w™), and we rule them out as impractical.

A better way of avoiding the H™! terms in (3.19) and
{3.21) is to bound them separately, using individual
variational bounds of the type
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(LHTY < =(x, Hy) +{x,1) +{I,x) + (1/0)| Hx -UI?,
l,xeH,, b>0, (4.3)

which follows from the positivity hypothesis (3.25).
Taking I =p —iwY and x=X in (4. 3), we find that (3.19)
gives, after simplification,

K (V)< I(X,Y)+A/DHX + iwY - plI2. (4.4)
Similarly, putting [=¢ —iwX and x= Y in (4.3), we
obtain from (3. 21) the result

K.(X)= I(X,Y) ~ (1/b)HY + iwX - g2, (4.5)
Dropping the tildes in (4.4) and (4.5), we see from
(3.22) that for arbitrary vectors X and Y in //_,

I(X,Y) - (1/b)HY +iwX -qlI* < Z(f,g:¢)
<IXY)+ (1/DNHX +iwY ~pll, (4.6)

These are bivariational bounds on Z(f,g;¢), which with
prescience we might have derived directly from (3.11)
and (3.25). They hold whenever H is positive and bound-
ed below away from zero, so that a suitable positive

b can be found according to (3.26).

The mixed vectors (x,y) and (X,Y) were introduced
with the object of deriving variational bounds depending
on a single trial vector, and so their usefulness has
evaporated in (4.6). Referring back to the original
vectors (¢, ¢) and (¥,®), the bivariational bounds (4. 6)
become

J(¥, @) - (1/b) 224 — 717 + p3|A* Y — gl
—Re{Ad — f,AY — g < Z(f,4:L)
<J(E,8)+ (1/b) A3 A —FII7 + u?ll A*Y - gl|?

+Re{ A - f,A¥T — o)}, (4.7
With the optimal choice for the ratio A:y of
M A® - fll = ull A*¥ —gll, (@rp=1), (4. 8)
we obtain the result
J(¥,@)+(1/0)S(¥, &) - (1/6)C(¥, @) < Z(f,g;¢)
sJW@,d)+(1/0)S(T,0)+(1/0)C¥, @) |, (4.9)
where, in terms of H,
JW,8)=—(¥,Hd) - (&,H¥) +iw{(2,¥) -(¥,2)}
(¥, )+, 1) +(g,8) +(®,8), (4.10)
S(¥,d)=Re((H +iw)d - f, (H-iw)¥ -g)
=Re(Abp, A¥6y ), (4.11)
and
C¥,@)=[(H +iw)d - fIl I(H - iw)¥ —gll =il Ab ol || A*64ll.
(4.12)

We call the bivariational bounds (4.9) implicit, because
they are contained in the mixed bounds (3.22).

In the special case of zero w, when 4 becomes
self-adjoint, the implicit bounds (4.9} are actually
tighter than others previously derived for self-adjoint
operators in real spaces (Ref. 18; see also Ref. 19).
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5. EXPLICIT BIVARIATIONAL BOUNDS

The bounds in (4.9) only hold when the operator H is
positive and bounded below away from zero by a positive
b, given by (3.26). However, irrespectively of whether
this condition is met, it is possible to derive explicitly
alternative bivariational bounds which merely require
the condition

lA@ll=allell, a>0, forall®c#,. (5.1)

Since
1 AD|>=(Ad, A®)=(d, A*AD) =(d,H’D)
+0?(3,8) 2 (B, — E + v {13117 + wll2 |,
(5.2)

where £ , is the energy eigenvalue of 42 which minimizes
(E,.~E_ +v)?, we see that condition (5. 1) is satisfied by
taking

(5.3)

We bear in mind that £, #E,_ (unless E, is degenerate),
since /_ does not contain 6 . Thus, disregarding the
exceptional case of zero ¢ and degenerate £, we can
always find a constant a to satisfy (5.1).

a@=(E, ~E +vP+w, a>0.

Applying (5.1) to (4.12) and then using Schwarz’s
inequality, we have

C(¥,2) > all 86I] 1 Ayl = a|{ o, A*Ey)].

The magnitude of the complex number on the right
of (5.4) is greater than or equal to the magnitude of its
real part, and so from (2,17) it follows that

C(¥,9)= $al{b¢, A¥ou) +(0y, Adp)|=4a| Z ~J(¥,)].
(5.5)

(5.4)

Rearranging (5.5) we obtain at once the explicit bivaria-
tional bounds

T, &) = (2/a)C () < Z(f,g:0) < JW, &) + (2/a)C(‘I'EJ.

(5.6)
Existence theorems for bounds of this type have
recently been presented, together with some
applications, 2%
6. THECASE F=¢
When f=g, as is the case for the dynamic
polarizability «{(¢) in (1.1), Eqs. (2.4) and (2.6)
become
(H+iw)p=F=H~-iw. (6.1)

If a similar relationship is imposed on the trial vectors

¥ and ¢ by taking
& =(H-iw)o, ¥={H+iw)6, (6.2)

for some trial vector 6 which is supposed to approxi-
mate (H*+ w?)'f, the functionals in (4.9) and (5. 6)
become

J==-20,HH +we) +2(f,HO ) + 2{(HO, f) 6.3)

and

C=8=| (H*+w’e ~f|2, {6.4)
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The bivariational bounds (4.9) and (5. 6) become
variational bounds, involving high powers of H, of a
type previously obtained.®*® The H* and H* rule them
out for practical purposes. Thus there seems little
point in trying to impose a constraint like (6. 2).
However, when choosing trial vectors, it would be
sensible to have in mind the relationship between the
respective w dependence of ¢ and ¥ which is implied
by (6.2).

There are some simplifications to be made if fis a
real vector, and the Hamiltonian % (and hence H) is a
real operator. Then it follows from (6.1) that ¢=73.
Accordingly, let us set

(6.5)

in the functionals J, C, and S, where &, and &, are real
vectors, We obtain the functionals

J(@,0)=~2(d ,HE, ) +2(D,, HD, ) + 4w (®,, ;)

b=0,+i0,, ¥=¢, -id,=J,

+4(®,, /), (6.6)
Cl@,9)=1Hd, — wd, - f1I*+ [[Hb, + wd 17, (6.7)
and
S(@,8)=1H, ~ wd, ~fII* = [|H&, + wd I, (6.8)
The implicit bivariational bounds (4, 9) become
J@,9) - 2/ HS, + wb ¥ < Z{f,f:5)
<IE,8)+(2/0) H, - wd, - 12, 6.9)
and the explicit bounds (5. 6) take the form
J@,8) - (2/a)C(@,%)< Z(f,/:0) < J@,d)
+(2/a)C(2,9), (6.10)

which at v =0 is essentially that given by Burrows.?
The mixed bounds K, (Y) and X _(X) simplify in this
situation, too, particularly if we take A=p =212 go
that X=9 V2, Y=i9,Y2 , p=sv2 and q=0, yielding

K (Y)=2(0,, Hb,) + 2((f+ wd,), H*{f+wd,)) (6.11)
and

K(X)==2(0,, Hp,) - 20X &, H'0,) + 4 &,, /).
(6.12)

Goscinski’ has given the amplitude-optimized version
of the bound in (6.12) for v=0.

7. DISCUSSION

Interest in the mixed variational bounds K ,(Y) and
K_(X) is primarily theoretical. Not only do they contain
the implicit bivariational bounds, but also they can lead
to bounds in terms of other known quantities. To take
a simple example, when w is small the solution to
Eq. (2.4) is approximately H™'f - jwH?f. Thus if we
take

by =c HY, &,=-iwc,H?f (7.1)

in the simplified functionals (6,11) and (6. 12), and
optimize with respect to c¢; and ¢,, we should obtain
bounds on Z(f,f:£) which are accurate for small w.
The bounds are
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1 (02 ~l
<5, - wz(-— +2S- )
2 - —2(8_4) (7.2)
in terms of the “sum rules”
8o =(f, HY). (7.3)

For ground-state hydrogen, the bounds (7.2) give the
result (in atomic units)

4,2490 < a(iw) < 4.2503 (7.4)

for the dipole polarizability at v=0, w=0.1,

When H is positive the quantity Z(f,f;¢) is a series-
of-Stieltjes-representable function of w?, and with
suitable choices of trial vector different families of
Padé approximant bounds can be derived from X, and
K_.%% More generally, whenever (f, (H?+ «%)"g) is
real, it can be shown that

Z(f,g:0) = (H'/?p), (H? + ) (H %))

- (%), (B2 + ) (H 7)), (7.9)

whence Z(f,g;t) is the difference of two series-of-
Stieltjes-representable functions. The K, and K_ func-
tionals are again the appropriate ones to yield the Padé
approximant bounds for this kind of situation,® rather
than bivariational functionals which lead to Padé
approximants plus correction terms, ?+#

From a practical standpoint, it is unlikely that a con-
venient representation of H* will be available, in which
case the mixed bounds K,(Y) and K_(X) are not of direct
interest even though they only involve a single trial
vector. Likewise bounding functionals containing H*
and higher powers can be ignored, because of the
consequent difficulties in evaluating the inner products
when sensible trial vectors are employed. Thus for a
practical tool we are left with the bivariational bounds,
in either the implicit form (4. 9) (only valid when # is
bounded below away from zero by a positive number b)
or the explicit form (5.6) (always valid). Although an
extra trial vector is involved, only H and H® appear
in the inner products, and this advantage is crucial.
The bivariational bounds should still be used even when
f=g; the simpler versions (6.9) or (6. 10) are relevant
when f=g is a real vector and H is real.

Even when the implicit bounds (4. 9) are avilable, they
will not necessarily yield better results than the explicit
bounds (5.6). For example, when w is large, the
number a [given by (5.3)] is of order w, whereas the
number & [given by (3.26)] is not. With the correct
asymptotic choices
(7.6)

d=-iffw, ¥=ig/w,

the explicit bounds give
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T+2C=6/0)(,8) - (g, + (/) He)

+<g,Hf>)i0(£a>, (7.7)
whereas the bounds (4.9) leave some uncertainty in the
w™ term. However, in cases like (6.4) when (S - C) is
zero, or very small, it is clear that the lower bound in
(4.9) is better than the lower bound in (5.6), We notice
also that the explicit bounds can never have quite the
correct w dependence because of the square-root
defining the number a. Thus, when both are available,
the implicit and the explicit bivariational bounds should
each b€ investigated in any given situation to see which
gives the better results.

Extensive calculations of bounds on dynamic polariz-
abilities (f=g) for two-electron atoms at zero w or
zero v have recently been carried out by Glover and
Weinhold. *~%7 The functionals of Braun and Rebane®
which they employed led to inaccuracies for small values
of w, Applications of the Glover ~Weinhold techniques
to the bivariational bounds developed here are being
explored. * The numerical results exhibit the significant
advantages of the bivariational techniques over
previously available methods. A pleasing feature of the
present approach is that the same bivariational func-
tionals provide bounds whether of not w=0, v=0, or

f=g.
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Charge conservation in metric-torsion gravitational theories
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The concepts of charge conservation and dimensional consistency are employed to derive conditions which
uniquely characterize the field equations of electromagnetismn and gravitation in a vector—metric—torsion
field theory which contains no cosmological constant. Using these results, it is shown that the
Einstein-Maxwell field equations are unique among all possible field equations of gravitation and
electromagnetism involving a vector field in a metric gravitational theory.

1. INTRODUCTION

The purpose of this paper is to apply the techniques of
dimensional analysis to the consideration of electro-
magnetic and gravitational theories which involve a vec-
tor field in addition to the usual metric tensor and, for
added generality, a torsion tensor, !

We shall be interested in field equations which take
the form

A =8, VgTV, (1.1)

Bl =16mk,VgJ*, (1.2)
and

Cimy, =8, Vg™, {1.3)

where A/, B!, and C'", are assumed to be tensor den-
sity concomitants of the metric g;;, the torsion S,k’,
and the vector field ¢, along with their partial deriva-
tives to some order. T*/ is the (symmetric) energy—
momentum tensor of all nonelectromagnetic matter
fields, J* is the charge-current vector of these fields
and p," is their pseudospin tensor, It is assumed that
the tensor densities A*’, B!, and 2C*", are variational
derivatives of a suitable scalar density Lagrangian with
respect to gy;, ¥;, and S5

An important feature of electromagnetic theories is
the physical assumption that charge is conserved.
Mathematically this takes the form?

(Vg ), =0. (1.4)

Hence it appears reasonable to demand that in (1.2),
the concomitant B! satisfy

Bi,i :05

identically. The principle of conservation of charge has
been investigated by Horndeski®* and the technique of
dealing with (1. 4) which will be employed here is a
generalization of his approach,

Probably the most significant physical assumption
made here is that of dimensional consistency., This as-
sumption has been developed into a technique of dimen-
sional analysis by the author and been employed in the
consideration of a number of concomitant problems re-
lated to relativistic gravitational theories. The axiom
for dimensional analysis and a discussion of its conse-
quences can be found in Refs, 5 and 6.

2. THE MAIN THEOREM

In this section we state the main theorem of the

700 J. Math. Phys. 19(3), March 1978

0022-2488/78/1903-0700$1.00

paper and discuss some of its consequences. The proof
will be given in Sec. 3.

The dimensions of the functions involved are deter-

mined as follows. From a previous paper® we have
Guinpoeng L™, Sy iy, ~ LT,

TH~L? and p," ~ L', In conventional electromagnetic

theory F;;~ L™ where F;;: =y, ;= ;,;, thus we have ¥,

~ L% and ¢l'j1...jy~[,'7’.

Since J! is a charge-current 3-density we must have
Jt~L/L*~ L2, By demanding that the field equations
(1.1), (1.2), and (1.3) be dimensionally consistent we
find that A¥~L2, Bi~L? and C'",~L",

Theovem: Suppose that A* (of class C?), B, (C%),
and C',, (C?), are tensor density concomitants of g,
¥y, S;s' and their various partial derivatives to some
finite order and satisfy the following conditions:

(@) A¥~L2 Bi~L7? C' ~L" and they satisfy the
axiom of dimensional analysis;

(b) there exists a scalar density / which is a con-
comitant (both tensorially and dimensionally) of the
form

L =L(gab; e ;gab.ci'--ca; wa; °e0y d)a.bf"bﬂ
N Sabc; e ;Sab C,d1--°d_r)

such that A*/ =5/ /bg,;, B'=6//5y;, and

Cimy=30//05,,%;

(C) Bi’i“:;o.
Then in a 4-space,

AV —aVgGY +3g1CTs S, + €78, 7~ 20T S, P

—%%@(FizF”—ig”FmFrs)’ (2.1)
Bt :az‘/gFijljy (2.2)

and
cimy= ‘/g{as@[lksb'"]b +a, 8", +a; St}
+a(;€l'"bcsbck + a’{flmabskab - a’IeubCEmSab”gck) (2' 3)

where a,, 0=1,...,7 are arbitrary unitless constants.
Moreover, a Lagrangian which satisfies condition (b} for

these expressions is given by
[ =—aVgR +C™,S,! +1a,VgF™F,,. (2.4)

Condition (b) excludes the consideration of dependence
upon constants with nonzero dimension (~ L%, a#0).
Hence the theorem applies to those theories of electro-
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magnetism and gravitation which do not involve univer-
sal constants (such as the cosmological constant) other
than ¢ and K. Although this prevents the elementary
charge e from occurring explicitly in the field equa-
tions, it may arise implicitly in a source term (e.g., in

JY).

The above theorem leads to a number of interesting
and quite general conclusions about electromagnetic
fields in a metric—torsion gravitational theory. Pro-
vided one prescribes the electromagnetic and gravita-
tional fields via equations of the form (1.1), (1.2), and
(1. 3) and if one accepts the restrictions of the theorem
as physically reasonable, then A*, Bf, and C'™, must
be given by (2.1), (2.2), and (2. 3) respectively. As is
apparent from (2.2) and (2. 3) no direct interaction
terms occur between the electromagnetic field ¢; and
the torsion field S,,*. In the absence of sources the field
equations reduce to the vacuum Einstein—Maxwell equa-
tions since for most values of the constants in (2, 3),
one can deduce® S, # =0 (proving that' “photons do not
produce torsion”).

Within the context of conventional metric gravitational
theories we have the following:

Covollary: Suppose A*/ and B' satisfy the conditions
of the theorem but are also independent of the torsion
and its derivatives. Then in a 4-space

A”:ap/g_rG”— %ag\/g,—f(F",F“—%g”F”F,s)
and B! is given by (2. 2).

A Lagrangian satisfying condition (b) of the theorem
is given by

[/ ==a;VgR +1a,VgF °F,,.

It appears that any generalization of the above results
will most likely involve dimensional constants in a di-
rect manner. Along these lines, Horndeski® has inves-
tigated second-order electromagnetic theories (within
a vector—metric context) and found that the Einstein—
Maxwell equations (with sources and cosmological
term) could be modified by the addition of terms involv-
ing a dimensioned constant and still satisfy the law of
conservation of charge.

3. PROOF OF THE MAIN THEOREM

The main theorem is proven with the aid of several
propositions, beginning with one which is based upon the
concept of dimensional analysis.

Proposition 1: Suppose A/, B!, and C'™, are tensor
density concomitants of g, ¥,, S, and their partial
derivatives to some order, where A'/ and B! are of
class C? and C'™, is of class C?. In addition we assume
that A'Y~ L% B'~L? and C'™,~L"! and each concomi-
tant satisfies the axiom of dimensional analysis. Then
A% and B are linearly homogeneous in g,y cs, Sq°,s and
5,50 and quadratically homogeneous in g4, ¢y ¥4, and
S,,° while C'™, is linearly homogeneous in the latter set,
all with coefficients which are (zeroth order) concomi-
tants of g, and ¥,. ®

The proof is similar to that used to deduce (2.5) in
Ref. 6.
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In the next proposition the symbol p, is used to de-
note a collection of (not necessarily tensorial) field
functions [e' Bes Pa= (gab; Sabc)]o

Proposition 2: Let /[ be a concomitant of the form

L=L(paser=3Paiyerigs Prieees Dnnoeeng)e

It
5/
8L 3.1
5 Zph,h 0, (3.1)
identically; then
2 (8L _ 3.2
awh(éw)‘o’ ®.2)
and
9 5/
O (3L L. 3.
EEA <6pA> 0 3.3)

Moreover, if / is a scalar density and the fields p, are
tensorial then (3.2) and (3. 3) imply (3.1), =

The proof of {3.2) and (3. 3) can be deduced from
Theorem (3.1) of Ref. ¢ by substituting p, for g;; and
5/6p4 for 6/6g,,~. The converse follows similarly from
Theorem (2, 2) of the same paper. [The required gen-
eralization of Eq. (2.15) of Ref. 4 is obtained using
Eq. (4.2) of Ref, 7.] Proposition 2 implies that the
theorem requires the coefficients described in Proposi-
tion 1 to be independent of ; and thus concomitants of
g only. At this point we can construct C'™,.

Proposition 3: If C'™, is a class C! tensor density
concomitant of the form

! ! cenen . Teas
cr,=C mlz(grs; ,grs,tlu-tm 5 Yrys ’ d)r,sin-ss
. tigens t
’ Srs 3 ° ’ Srs '“IM'"Y)
such that C',~ L™ and satisfies the axiom of dimen-
kR

sional analysis, then in a 4-space C*™, is given by
(2.3).

Proof: Evidently the coefficients of g, ¢, S,f, and
%y,s in C'™, depend upon g,, only. Since 9C'™,/3y, , is a
tensor density concomitant of g, it vanishes in a 4-
space by a well-known result. ® Using the replacement
theorems of classical tensor analysis,® we deduce that
C'm =n"""%(g.)S,s¢. Equation (2.3) follows from the
construction given in Ref. 6. a

Since C'",=35(C"%,S,,')/8S,,*, where C'™, is given by
(2. 3), that part of the theorem is proven.

Bearing in mind the results of Propositions 1—3 along
with the identities!”

and

o (8L \_ 2 (o
wir () =2 (550)

we see that B! is independent of S;,, and $,,* ;. Hence

B! is linearly homogeneous in Zabrca and ¢, o, and quad-
ratically homogeneous in g4, . and ¢, with coefficients
depending upon g,, only. B! is then given by the follow-
ing result.,
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Proposition 4: If B' is a class C? vector density con-
comitant of the form

B! :Bi(grs; e ;grs,ti-"ta; d’r,s; tets (pr,s1---s8)
and suppose B'~ L and satisfies the axiom of dimen-

sional analysis, then in a 4-space B? is given by (2. 2),

Proof: The usual dimensional technique® implies that
B must have the form described in the previous para-
graph. Since the tensor density 9B°/9g,,, .4 is a concomi-
tant of g,, (only) it vanishes in a 4-space. The invari-~
anc?1identity7 3B*/0%(, o =0 enables one to deduce
that

0Bt
9 d)r, st

Hence B* =aVgF%,; + B where B' is a vector density
(quadratically homogeneous in ¢, s and g, . With coef-
ficients depending upon g,, only). As above, the tensor
density a2B*/2¢,,, 94, ,=0. The replacement theorem
then implies that B =0, from which the proposition
follows, &

Since aVg F'/\;=6(iaVg F™*F,,)/0y; and (Vg F/|;);=0,
B*, as given by (2.2), satisfies the conditions of the
theorem.

:a@[girgst - %(gisgrt +gitgsr)].

The proof of the theorem can now be completed. Tak-
ing into account the previous propositions along with the
identities'’

il &/ >___ 0 <5[
0% ab,c as,mk N aSzmk.c 0Zap

and

s (1) 7z (52
agab.cd Gd)h - az1bh,cd 6gub ’

we find that 9A'//3S,,* ;=0 and 24%7/3¢;, ., =0. We also
have 3?A*7/ay,, 3S,,° =0 and 924'7/0g,,. . 3¥,, ;=0 since
they are both tensor density concomitants of g,, (only)
in a 4-space, Differentiating the second inva;iance
identity” for A*’ with respect to ¢, yields 344/3¢(,,
=0, implying that
aZAiJ' aZAii

alpr.s azpa,b - ad)s,r ad)a,b )

Hence we can write A*/ as

;s ~. ijabed
A”:A‘j*‘?}n (grs)Fachm

(3.4)
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where A" is a tensor density concomitant linear in
Zab,ce aNd quadratic in g, . and S;,.*. The identity!?

) (36)
ad)r,s 6gii agil,s 611)1'

implies that

1 a°B°

niiabcd —_—
2 094,50845,4 "

and thus from (2, 2) we deduce that

1 mifabed
1 n

FuFo=—3aVg (F FI' - 1g"FsF ).  (3.5)

It can be shown that®
Abd bV G+ LgiiCTs .S, b+ CT8iS, - 207 8,75,

which together with (3, 4) and (3.5) implies (2,1). That
the Lagrangian (2. 4) satisfies condition (b) of the
theorem is straightforward, This proves the theorem.
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It is shown that the representation functions of SO(n) can be obtained from those of SO(n —1) by
calculating the Weyl coefficient of SO(n), which is equal to the representation function of SO(n)

calculated at @ = 7/2. Thus the problem of calculating the representation functions of SO(n) is reduced
to its calculation at a particular value of 8 (= 7/2), instead of a whole range of values of 8. The Weyl
coefficients of SO(3), SO(4), and SO(5) are explicitly obtained and discussed in detail. It is shown that

the Weyl coefficients of SO(n) are all expressible as sums and products of 3-j symbols of SO(3) and
normalization factorials. We also conclude that the representation functions of all orthogonal groups (as

imé

well as unitary groups) are ultimately reducible to the representation function of SO(2), ie, ™%
multiplied by corresponding Weyl coefficients. Therefore, all representation functions of SO(n) and U(n)
are ultimately expressible as Fourier series, whose coefficients can be explicitly calculated if one so

wishes.

1. INTRODUCTION

It is interesting to note that our knowledge of the
representation functions of U(xn) surpasses our knowl-
edge of the representation functions of SO(n); in other
words, the representation functions of the two classical
groups have not developed at an equal pace. For the
unitary group, it was first pointed out by Gel’fand and
Graev! that the representation functions can be ex-
pressed as generalized beta functions. A different
approach was made by Chactn and Moshinsky® while
calculating the finite transformation matrix of U(3).
They calculated the Weyl coefficients of U(3), and found
that this was connected with the 6-j symbols of U(2).
Holman® and Wong* then showed that the Weyl coeffi-
cients of U(n) are basically 6-f symbols of U{n-1). We
intend to show in a future publication that all the Weyl
coefficients of U(r), or equivalently all multiplicity-
free 6-j symbols of U(z), can be explicitly evaluated,
and not merely as sums and products of four 3-j sym-
bols. Louck and Biedenharn® showed that the generalized
beta functions of Gel’fand and Graev are expressible as
a product of an isoscalar factor in U{») and an isoscalar
factor in U(z - 1). Wong* showed that it can also be ex-
pressed as a product of a stretched 6-j symbol in
Ul -=1) and an isoscalar factor in U(r ~1). Thus we can
at least say that our present knowledge of the repre-
sentation functions of U(z) has reached a satisfactory
stage.

We cannot say the same with regard to the represen-
tation functions of SO(x). So far there are basically two
approaches, one by Maekawa® and the other by Vilenkin’
and Wolf.® Maekawa’s method is to write the d function
for the highest weight, and use lowering operators of
Pang and Hecht® (or Wong!?) operating on the highest
weight to get the general state. Vilenkin and Wolf’s
method is to write the 4 function as an integral over its
maximum compact subgroup, using the multiplier rep-
resentation for SO(#,1), and analytically continue to
SOm+1).

There remain a few questions unanswered by these
two methods. The first is: What is the structure of the
d functions for SO(x) in general? Is it expressible in
terms of elementary functions, as we know the d func-
tions of U(x) are? And if so, do the coefficients have
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some meaning? The second problem is: Why are there
different expressions for the representation functions of
the same group, and how are they related to each
other? For example, Wolf has shown that the d functions

“of SO(n) are all expressible as a sum over sin?6

Xexp(fg6). But in the case of SO(4) for example, we
also have the result of Freedman and Wang, ! where
only exp(igb) appears. A similar situation is found in
the case of the noncompact group SO(3.1), where the
representation functions can either be expressed as a
sum over a hypergeometric function,>~'® or as a
Fourier series, as Smorodinskii and Shepelevl’ and
recently Wong and Yeh'® have shown. A third problem
concerns the practical calculation of the d function using
the above methods. Since both methods treat 6 as a
variable, the calculation becomes very complicated as
n increases.

It is at this point that we look at the corresponding d
functions of U(x) and see if we can obtain some help
from there. We find that there is indeed an approach
common to both U(n) and SO(z): the Weyl coefficient
approach. In this approach it is not necessary to cal-
culate the d function for the whole range of 6. For
SO0(n) it is sufficient to calculate the value at 6=17/2
(or 6=-17/2). The rest can be obtained by recurrence
with SO(n - 1). Since the lowest order groups are well
known: for SO(2) the d function is equal to exp(im?¥),
for SO(3), it is the well-known Wigner d;_,(6) function,
we can say that the Weyl coefficient approach reduces
the calculation of the d function of SO(n) to a single value
of 8, i.e., when 6=7%/2.

Thus the first problem is answered. There is indeed
a structure in the d functions of SO(z). It can be re-
lated to any of its subgroups, multiplied by the cor-
responding Weyl coefficients. Thus ultimately we can
say that the d functions of all SO(n) can be written as
Fourier series, whose coefficients can be explicitly
calculated. The second problem is also answered;
since the d function of SO(4) can be written either in
terms of SO(2) or SO(3), therefore we can express it
either as a sum over exp(ig6) (SO(2)), or sin*#cos? 8
(s0(3)).

The third problem is answered in the following way:
Whereas the d function of SO(n), n large, still remains
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complicated, we have subdivided its complexity, and
have posed the problem in a simpler way: [.e., What

is the d function of SO(n) at 6=7/2? If we can answer
that question, then we can answer the whole question.
However, we have to admit that the final expression for
the representation function of SO(x) is still quite lengthy
and complicated, because all the Weyl coefficients have
to be multiplied together.

In Sec. 2 we present the formalism for the Weyl co-
efficients of SO(x). In Secs. 3, 4, and 5, we discuss the
Weyl coefficients of SO(3), SO(4), and SO(5), respec-
tively. In Sec. 6 we discuss the Weyl coefficients of
SO(n), for n>5. In Sec. 7 we draw some conclusions
from the above discussions.

2. WEYL COEFFICIENTS OF SO{n)

The special orthogonal group SO(z) is equivalent to
the rotation group in an n-dimensional Euclidean space.
If one uses the familiar Ji; as generators, one can
regard its finite transformation exp(iJ,;6) as a rotation
in the i —j plane, represented by the matrix

cosd sin8
- siné cosé
in the 7 - j plane.

A group element in SO(n) is made up of in(n — 1) such
rotations, and in order to obtain the representation
function of SO(») it is only necessary to know the matrix
element of the rotation D_,, (6). The rest can be ob~
tained by recurrence, or induction on . D_, (6) is the
matrix d with d;; =1 for i=1,2,...,n-2.4d_,, ,=d,,
=co0s6, d_,, =sinb, d___,=-sinb, and all other matrix
elements equal to zero. We shall introduce the general
rotation matrix D“(Q), whose matrix elements are
d,=1Tor k*i#j, d;; :dﬁ =cos#b, d;;=sinb, d =~ sing,
all other matrix elements equal to zero. Furthermore
we define the Weyl coefficient W, :D,./(mz)g It is then
easy to see that W;] =D,,(- 7, 2). We then have the

following relation:

D,,.1m(9) = W;:z.nDn.zm-l(_ B)Wn-z.n
1
= W,,-zm-l n-lann-2-n-1Dnm21n-l(— 6)
X LVr-riztn-l W;EI:" LVn-2m-1
= W:z,n-l W,-;lml)n-zmq(Q)Wn.lmwn-z.n-v @.1)

Therefore, if we know the representation function

D_,,...(0), then we can obtain the representation func-
tion D__,, () provided we can calculate
W=D, 2. (2.2)

This means that the representation function of SO(n) for
arbitrary ¢ can be found if we know its value at a
particular value of 8, i.e., when f=7/2, Historically
this has not been the approach used to find the repre-
sentation functions of SO(#). In the methods used by
Maekawa, and Vilenkin and Wolf, 6 is treated as a
variable. The result is that the actual expression for
the d function of SO(:) for large n becomes very com-
plicated, and very few structural properties can be
discovered from the expression.
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The advantages of using the Weyl coefficient approach
are the following:

(1) It reduces the calculation of the d function of
SO(n) to a particular value of 6, i.e., #=7#,2. Though
the final expression for the d functions of SO(n) is still
quite lengthy, at least the 6-dependent part is quite
clear, i.e., it is entirely restricted to the subgroup of
SO(;), while the other factors are recognized as the
Weyl coefficients in accordance with (2.1).

(2) It shows its connection with all the different sub-
groups of SO(z), thereby clarifying the structural
properties of the d function of SO{n). As a result, one
can make a very sweeping statement such as the follow-
ing: All representation functions of the orthogonal
group (and in fact the unitary group as well) are ulti-
mately expressible as Fourier series, whose coeffi-
cients can be explicitly calculated.

(3) One can also show that the Weyl coefficients are
all expressible as sums and products of 3-j symbols of
SO(3) and normalization factorials.

3. WEYL COEFFICIENTS OF SO(3)

It is interesting to note that the Weyl coefficient of
SO(3) was treated by Wigner'® and can be found in
Edmonds.?® However, it has not received much at-
tention. Using Eq. (2.1), we find

D, (6) = Wik W, W, Dy, (= O)WIAWLIW,,, 3.1)
where

D,,(8) =exp(im6) (3.2)

Wy =Dyalr/ 2y =dl, (n/2), (3.3)

where d’, (6) is the Wigner function of SO(3).

Substituting the values in (3.1) we obtain

A2, (8) =25 @' mdl,, G/ 2)d0es . (. 2) exp (= im " O).
(3.4)

-

This agrees with Edmonds®® (p. 62).

Let us now make a brief survey of the different ways
d?, (6) can be written. Basically, there are two dif-
ferent ways it can be written. The first way is to ex-
press it directly in terms of sin8/2 and cos6/2, e.g.,
according to Edmonds,*

[ G = e \ (=
d'{l,m(g)*[ (j-‘,—);],)!(j—ﬂl)l] ?(_‘i—ﬂ'l’_())( g >
X (= 1)7"m*=9(cos §/2)%*m +m (ging/2)?i-2o-m"-m (3 ,5)

The second way is to express it as Jacobi polynomi-
nals, or equivalently as hypergeometric functions.
Thus, e.g.,

(w1 (T =)
d";,:m(e) = [(J+ )’i’L)! (J —771)!

1/2
] (cosg/2)m'+m

X sing/2)m'=m pPim’omam’+m) (cog @)

(J=m) 1 (J+m')1]M/2 ) /9 V2T smem?
= [(J—::;lq)! (J-y:}fl')Y] (cos /2%
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(sing/2)m’-m We now show a third way that d7, (6) can be written,

F n’ =d, ~m —J;

(m’ ~m)! i.e., in terms of the Clebsch—Gordan coefficients of
SO(3). As far as we know, this expression has not
X m' —m +1; —tan®6/2). (3.6) been found in the literature.

J

We start from the normalized double boson polynomials in U{2)« U(2):

Ky
e =% [y = ma22) 1 (12 = man) 1 yg =~ man) L 02y — Haa) 1172 [(W112+1)!n122! ]'1/2
Blm e |= &0 7 11 = Mg = ) LMy = Mgy = S1 My = gy — fiyy Fmmgy +8) 1 005 = migy +1)1
myy

M1L ~M_ =S . m m=m =8 oM o=yl oS
1,2 _ ,2 1yngg 15 2 22 171 a2 2My2™ 117 11722
X(alal - a2al)"? a} & a a2

30myy + Mgy = 1) 5 Hyy $0my, = mgy)
C
&\~ =S, g = b)) O =Sy, myy = B0y, )
- - + - =-Hyto
y (lia(lfm“ a1 “agml?. Mag=ML1=H 1y (3.7
[ f0my, = )1y = ) Onyp + gy =y = gy + )]/

For the derivation of (3.7), see Wong.* We now make the following substitution:

my,=2J, p,=m +J, my=m+d, my=0, a=d=cosb/2, ai=sing/2, ay=-sinb/2.

Then (3.7) becomes
| (cos 8/2)2%=m=m’ (5ing/g)m+m’ v2d2a
$(m -m') Y J+m’)  J

(=1 [atm +J~a)ton’ +J —a)l (o —-m—m )7 @©.8)

dlL (&)=2;¢C
« m+im! +J)—a a=-3m' +J) m

The Weyl coefficient of SO(3), W,,, can be easily obtained from these expressions by putting 6=7,2 in d;{zm,(e).

4. WEYL COEFFICIENTS OF SO(4)

From the Freedman—Wang result, we have

Ty Y myg) wlmy - my,) i i’

$0my, Tmg) F0my, —my,) j

. C
= A1 42 = T ) - 2“'—”1. .
Waa=djj0 e /2) ]:’C f m-— i m i "~ U m (-2) 4.1)
Thus using (2.1) again, we can write the “boost” matrix as
D, (6) = Wit W, , W,, Dy (= O W3 W3t W, 4.2)

where D,,(~ 6), as we have seen in the previous sections, can be expressed as a hypergeometric function.
Continuing to the Lorentz group SO(3,1), one can now understand why the earlier work on the boost matrix
of the Lorentz group by Strom,!? Duc and Hieu,'® Verdiev and Dadashev,'* Sciarrino and Toller,'® Makarov
and Shepelev,®® etc., to quote but a few, all showed that it is a sum over a hypergeometric function. This is
because they have expanded the boost according to (4.2). Then it was shown by Smorodinskii and Shepelev!”
and recently by Wong and Yeh'® that it can also be written as a Fourier series, i.e., in terms of the
Freedman and Wang expression. From the Weyl coefficient point of view, it is clear that we can also write
D, () as

Dy (8) = (Wi Wy Wy Wi Wy Wy, ), (6) (W Wil W, W3S W3 W) (4.3)
Then (4.3) will give the Freedman and Wang result.

Let us now try to express the Freedman—Wang result in the form of (4.3). We have

ma1 maz () E 'l_»()';l,u + }17,42) ’%(’7}141 - }’}142) j %(17241 + m42) %(m41 - ;,”42) 4
d, 6) = C "
3tm i slm + p) sm - u) exp(itp)C $0m + 1) Tm - ) m
5 Ly, + myy) é’(mﬂ - mg) i slmy, + My) Flmgy = my) "
X C C
e s0m + ) w=-m) p Lom + ) Hw=-m) u
2 3‘2’("741 v "1‘42) %(m“ - 77142) i %(Wlﬂ + WL42) ':li(mﬂ - m42) 7"
wagtt '}_;'(H] + p) %(m - ‘u) m l;(?’?l + “) %(‘u _ Wl) "
X expliG.)C Fomgy + myy) Fmy - my) §” omgy + my) Smgy - my) 7
expizou I9)
pm+ ) Su-m) u Som + 1) Lm=- ) m
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My My My My, My Myg ) my, My
=25 j w- o g exp(iu) iowl g , (4.4)
jtu
m H m ’ m
where
m41 m42 m41 m42 %(m-u + qu) }é(m41 - mq,z) j” %(m41 +m42) %(m“ - m42) j’
. , 4.5)
" W 14 :C C - (
! g Ym+w)  Hu-m) tm+w)  fm-p) m
o m
Comparing (4.4) and (4.5) with (4.3), we conclude
My Mgp Mgy Myp
. slmyy tmy) 3(mgy —mgy) i\ [3mgy+my,) dimy, - my,) j
j W Wi W, Wil W3l W, E _c 2\Myy a2/ 2y a2/ J c 2\ T Myy) 3 My a2/ ] (4.6)
n " $m + ) (p-m) tm+p)  Fm-p) m

(4.6) is a remarkably simple result, though it involves the product of six Weyl coefficients.

5. WEYL COEFFICIENTS OF SO(5)

The d function of SO(5) has been obtained by Holman.? We wish to make three corrections on Holman’s expression
for the normalization factor 7. These can be checked either from direct calculation or from consistency arguments,
e.g., by calculating the matrix elements of exp(iL,,6) and showing that it must reduce to the SO(3) 4 function. The

final result is

Jm Am Jm Am
JA J A
L’ 045(9) L = oLL' MM’(_]')A'A' jjz)j'j (2K1+1)(2K2+1)j(JmAm,J,A ,]lj; [(2JI+1)(2AI +1)]1/2
Vgl1i2
M M Ky Ky
h MK oMK
X Qs Ay Ko pdil,, (e)d"{x 11, (OF (A 3 A )20 + 1)+ 1)]/2 B Ao B
JOAN L J A L
where (5.1)
j1+A1=ji+A;:Jm’ ]'2+)\2=]'£+K;=Am, (5.2)
s . (J+j1-]2)I(A+J _A '-'1+')!
J. =(-1)¥ LB 2
F I Afa) = (1) 2[(J+Jz"]1)l(]1+12'J)!(J+]1+]é+1)!
(J FAp = J=MI(Tpy + A= +A+ DU, + A, +T=A+1)1(J, + A, +T+A +2)1
(J,~A +J+A+1I(T, =A +J~ A)I(J ~A,=J+M)2J, +2A +2)!
@, ~2A, +1)1(A, ~d, +A +J)! ]1/2 5.3)
j -A)!(A +J +A ~j =gt 1)1 ’ :

(A J +j A, S DICA -]1+A

The Weyl coefficient W,; can be obtained from (5.1), (5.2), and (5.3) by putting 6=7,/2,
Again we wish to point out that (5.1) is not the only way D,;(f) can be written. It can be written in terms of the
subgroup SO(4), in which case D (6) can be expressed as a Fourier series.

From the Weyl coefficient point of view, what is interesting about Holman’s expression (5.1) is that the Weyl co-
efficient of SO(5) can be expressed as 9-j symbols multiplied by normalization factorials. This could be the key for
higher SO(n) D functions. In the next section we shall show that all Weyl coefficients of 8O(n) are at least express-

ible as sums and products of 3-j symbols of SO(3) and normalization factorials.

[symbols of SO(3) and normalization factorials. We shall

6. WEYL COEFFICIENTSOF SO{n},n>56
show in this section that this is true for all ».

From the results of the previous three sections, we
see that the Weyl coefficients of SO(3), SO(4), and SO(5)
can all be expressed as sums and products of 3-j We shall prove this by using the integration method
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of Vilenkin and Wolf. This method has the advantage
that both the pseudo-orthogonal group SO(1z,1) and the

compact group SO(nz + 1) can be treated in the same way.

It has been shown by Vilenkin and Wolf that the d
matrix for SO(,1) or SO( +1) can be written as
[wolf, Egs. (6.11), (5.12)]

(dim,Jdim J')*/ 20 (n/2)
dim_,Ldim _ L'7*/*T (3 (z - 1))

Ao ()= 2 dim, ;M

. —_[siné\ .
« f sin™? 9dg 477 (@) (—5%) a7t ()(6.1)
4]

where for the noncompact group SO(x, 1),

siné

W = cosh{ ~ cOs@sinhg, (6 2)
__ cosbcosh{ ~sinhg
cos ¥ = coshi — cosfsinhg (6.3)
For the compact group SO(n +1): {=—1ib
in6
Ss;:g’ , =086 +icos #sing, (6.4)
cos — cos6cosb +isingd (6.5)

" cosbd +icos¥sing

Also to continue from SO(x,1) to SO(z+1), one should
multiply by the phase factor W;! of Maekawa,??

Now for the group SO(z+1 ), n>5, we can always
express the df, ., (8) in (6.1) in terms of the d function
of SO(5), which, as Holman?® has shown, can be ex-
pressed in terms of the d function of SO(3). We are
thus required to evaluate an integral of the form:

LA 5 Y sin6\ * g
fo sin™?0d6d;, (6) T dle s (87).

Our purpose is to show that (6.6) can be expressed
as sums and products of 3-j symbols of SO(3) and nor-
malization factorials. To show this we first use
Vilenkin’s?® formula for the d function of SO(3);

. (J=m)(J=n)1 ]2 [1+2\1/20nem)
J —_ jem=n
d””‘(z)“z [(J+m)!(J+n)! l—z)

(6.6)

EP (g + ! 1-2\V
XJZ (J=D1G=m)1 (G —n)! ( D) ) (6.7)

where z =cos6. Then we use the following
transformation:

1+2z" =exp(- ¢)(1 +z)(cosh¢ — sinhgz)!,
1-2z"=exp(&)(l —z)(cosh¢ —sinhiz)!,

1 +exp(~2¢) >'1

(cosh — sinhgz )t :Smh-lg< 1-exp(-20 "~

(6.8)

¥inally putting z=-y +1, we can evaluate the integral
(6.6) by (3.259.2) of GR**:

fo v = y)t (ym + gm)dy
=gt B () F (=X, 0/m,. (v +m-1)/m;

m+1

(ptv)/me(u+v+m=1)/m;(~u/gm). (6.9)
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Since m =1 in (6.9), we obtain a ,F, function, with
arguments 1 - exp(~2¢). The next step is to express the
hypergeometric function by the Barnes integral rep~
resentation and the Barnes lemma.?

. _ F(C) —1 =h+i®
2Filabei2) = e o= AT @) sz_k_iw

dtT(a+ 0T B+ 00 (c=—a~b-HT (=11 =z)¢,
(6.10)

It then turns out that the summation over j and j’
resulting from the two d functions of SO(3) can be per-
formed giving two ,F, functions with unit argument,
which in turn, can be expressed as 3-j symbols of
SO(3). Finally the contour integral can be performed
by closing the contour by an infinite semicircle in the
right half-plane. It can be checked that by Stirling’s
formula for the asymptotic behavior of the gamma
function the integral on the semicircle vanishes. The
integral can then be expressed as a Fourier series,
whose coefficients are sums over the residues of two
series of poles. Finally by putting 5 =x/2, we obtain
the desired Weyl coefficient. The details of the above
calculation for SO(3,1) and therefore for SO(4) have
been given elsewhere by Wong and Yeh, !®

Another way of showing the above result is by pro-
jection. Since for SO{u), n> 3, the d function can
always be expressed in terms of the d function of SO(3),
we can calculate the Weyl coefficients by projection,
i.e., the Weyl coefficients can be obtained from (6.6)
by evaluating the integral

J2 D (ax, (6.11)
where x =cos6. But all the terms in (6.6) can eventual-
ly be expressed as functions of (1 +x) and (1 —x). Now
using Eq. (3), p. 284, Vol. 2 of Erdelyi ef al.,? we
can evaluate the integral in (6.11) through

/1 (1 - x)P(1 +x)°P*¥(x)dx

-1

T(p+1)I'(o+1)
T{o+p+2)

— pru

XgF(~n,a+B+n+1,p+1,a+1,p+0+2,1),
(6.12)

Equation (6.12) is in the desired form, i.e., in terms
of 3-j symbols of SO(3) and normalization factorials.

7. CONCLUSION

We have treated the representation functions of SO(xn)
from the Weyl coefficient point of view. The advantages
are at least twofold. First, one finds that the rep-
resentation function of SO(x) for all values of ¢ is known
once it is known for a particular value of 6, i.e.,
8=n/2. Second, one obtains a connection between the
d functions of 8O(r) and all its subgroups. When ap-
plied to noncompact groups such as SO(3,1), this ex-
plains why there have been so many different forms
for the boost matrix of the Lorentz group. But basical-
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ly there are two different forms: one in terms of the

hypergeometric function (i.e., with SO(3) as the sub-
group), and the other according to the Freedman and

Wang form, i.e., in terms of the subgroups SO(2).

We have obtained the Weyl coefficients of SO(3),
S0(4), and SO(5) (up to a substitution). It is tempting
to ask whether, for SO(5), it is possible to obtain a
simple form, such as Eq. (4.6), when SO(5) is de-
composed in terms of SO(3). So far we have not suc-
ceeded in doing so. The problem is worth further
study.

We have shown that all Weyl coefficients are ex-
pressible as sums and products of 3-j symbols of
SO(3) and normalization factorials. In the case of SO(5),
we know from Holman’s work that the Weyl coefficients
are expressible in terms of 9-j symbols of SO(3).
Whether this is true for higher order groups remains
to be seen.

Finally, we conclude that all representation functions
of SO{n) [and U(n) as well] are ultimately expressible
as Fourier series, whose coefficients can be explicitly
calculated if one so wishes.
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We show how the definitions of the classical Lie groups have to be modified in the case where Grassmann
variables are present. In particular we construct the general linear, the special linear and the
orthosymplectic graded Lie groups. Special attention is paid to the question of how to formulate an

adequate “unitarity condition.”

1. INTRODUCTION

During the last two years considerable progress has
been made in the theory of graded Lie algebras. For
example all complex simple graded Lie algebras are
now known. =% Furthermore, a general theory of graded
manifolds and of graded Lie groups is going to be de-
veloped.*'s Nevertheless we think that is is worthwhile
to contruct some sequences of graded Lie groups (and
the Lie algebras associated with them) in an elementary
matrix notation. This is the more true since these
matrix groups and algebras have made their appearance
in various branches of theoretical physics (supersym-
metric field theory,® supergravity,” theory of classical
spinning particles® ),

To begin with we describe in Sec. 2 some topics of
the corresponding matrix algebra. All these results are
more or less well-known, however, it might be useful
to have them collected at one place. Section 2 also con-
tains the definition of the general linear graded Lie
groups as well as a discussion of some of their elemen-~
tary properties.

The matrix algebra being established, we construct
in Sec. 3 the special linear and the orthosymplectic
graded Lie groups.

To obtain “compact forms” of our groups we have to
introduce the appropriate adjoint operations in our
matrix algebra (Sec. 4). It turns out that there exist
(at least) two essentially different possibilities, Using
these operations we can construct “compact forms” by
a unitarity condition.

The last section contains a short discussion of our
results as well as some final remarks.

2. THE MATRIX ALGEBRAS M(n, m) AND THE
GENERAL LINEAR GRADED LIE GROUPS PL{n, m)

Let W be any (complex) vector space and let A=A W

be the exterior algebra constructed over W,
A=AW=& AW. @.1)
r=0

It is well-known that AW is an associative Z-graded

aWork supported by the Deutsche Forschungsgemeinschaft ,
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algebra. We define

2+l

2y
Ag=D AW, A,=d A W, (2.2)
r=0 r=0

The elements of A, (resp. of A) are called the even
(resp. odd) elements of A, Recall that 4 is graded com-
mutative in the sense that

ab=(~1)*%ba,
if acA,,be A,.

2.3)

Most of our results remain valid for more general
associative graded commutative algebras A.

A. The algebra M({n,m)

Now let n,m >1 be some natural numbers which are
assumed to be fixed in the following. Let M{n,m) be
the set of all block matrices of the form X = ( {) with
a an nXn matrix and b an m Xm matrix whose elements
are taken from A,, furthermore, ¢ an nXm matrix
and 7 an m X#n matrix whose elements are taken from
A,. More precisely, for any natural number # let
M,,(n,m) be the subset of M(n,m) consisting of the
diagonal block matrices (§ }) with elements taken from
A2T W and let My, (n,m) be the subset of M(n,m) con-
sisting of the off-diagonal block matrices ( §) with
elements taken from A%** W, Equipped with the usual
addition and multiplication M(n,m) is an associative
algebra, and the subspaces M, (z,m), »> 0, define a
grading of M(xn,m) in the sense that

M(n,m)zgﬁoMr(n,m),

Mr(n,m)M,(n;m)CM (n;m);

ré+s

2.4)

for all »,s > 0. Every element X € M(n,m) has a unique
decomposition

X=2;X,

r=0

2.5)

with X e M, (rn,m) (only finitely many X, being different
zero). The element X, is called the (homogeneous)
component of X of degree ». Note that X, is a complex
block-diagonal matrix.

Furthermore, let us introduce a subspace M, (n, m)
of M(n,m) as follows:

M*(n,m)_—.reler(n,m). (2.6)
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Obviously M, {n,m) is an ideal of M(rz,m). Every ele-
ment X of M, (rn,m) is nilpotent, i.e., there exists a
natural number g such that X?=0.

Next we want to transcribe the notions of transpose,
trace, and determinant of a matrix to the graded case.
It turns out that the ordinary definitions are not ap-
propriate for our purposes. Let us begin with the
transposition. For any matrix B we denote by !B the
iransposed matrix of B. Of course, for all Xec M{n,m)
the transposed matrix tX is also a well-defined ele-
ment of M(n,m). However, if X,Y e M(n,m), then in
general

HXY)#YEX, 2.7)

The theory of graded vector spaces and algebras sug-
gests the “correct” definition. If X=( i) is any ele-
ment of M(n,m) we define the graded transpose TX of
X by

Ty -ty
t‘E tb ‘
It is then easy to check that
TxXy)="Ty"x

(2.8)

(2.9)

for all X,Yec M(n,m). Note, however, that in general
Trx+ X. The situation for the trace is similar. The
(usual) trace Tr(X) of an element X< M(n,m) is well-
defind, but in general, for X, Y M{n, m)

Tr(XY)#Tr{YX). (2.10)

Again the theory of graded vector spaces and algebras
helps to cure this disease. If X=( {) is any element of
M(n,m) we define the graded trace Trg(X) of X by

Trg(X)= Tr(a) -~ Tr(b). (2.11)
It follows that
Trg(XY)=Trg(vX) (2.12)

for all X, Y e M(n,m). The definition of the graded de-
terminant will be given below.

8. The general linear graded Lie group PL(n,m)

Once the matrix algebra M(»n,m) has been introduced
it is evident how to define the general linear graded
Lie group PL{n,m): This is the multiplicative subgroup
of M{(n,m) consisting of all those elements which have
an inverse.

To discuss the structure of PL(n, m) we remark that
an element X< M(x,m) lies in PL{n, m) if and only if its
component X, of degree zero has an inverse (recall
that X, is a complex block-diagonal matrix). If this is

the case, we have
X3 Xel+M,(n,m). (2.13)

Now all elements of M, (n,m) are nilpotent. Hence

exp: M (n,m)—~1+M (n,m) (2.14)
is a bijective mapping and
log: 1 +M (n,m)~ M, (n,m) (2.15)

is its inverse. Both exp and log are defined by their
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power-series expansions; problems of convergence do
not arise since in the present situation only finitely
many terms of these series are nonzero, [Of course,
expX is defined for all Xe M{n,m) and is an element of
PL(x,m). ]

Let PL,n, m) be the group of all elements of M,{n,m)
which have an inverse; by definition PL,(z,m) is the
group of all block matrices (¢ 9) with ac GL(n) and b
€ GL{m). Then we conclude from our remarks made
above that every element U< PL(r,m) has a decomposi-
tion of the form

(2.16)

where the elements U e PLj(r,m) and U_cM, (n,m) are
uniquely determined. In particular PL(z,m) is the
semidirect product of the subgroup PL Gz, m) with the
normal subgroup 1 +M, (n, m)=exp[M, (n,m)].

U=U,explU,,

This decomposition turns out to be a useful tool for
the discussion of PL(n,m) and of its subgroups. For,
on the one hand, PLy(n,m) is an ordinary Lie group.
On the other hand, the normal subgroup 1+ M, (z,m) is
easily treated by purely algebraic means, using the
bijectivity of the exponential map (2.14) as well as the
Baker—Campbell—-Hausdorff series H. In fact, if
X,Ye M, (n,m) then the series representing H(X,Y)
breaks off after finitely many terms and we have H(X,Y)
€ M,(n,m) and

exp[H(X, Y)]= (expX)(exp?). 2.17)

It follows, for example, that every element exp(X),
X< M,(n,m), has a unique decomposition of the form

expX = (expY,)(expY,), (2.18)

with ¥, M,(n,m),Y, even and Y, odd, i.e., Y, ®,,
XM,,., G, m).

Next we remark that the associative algebra M, m)
can be converted into a Lie algebra by defining the com-
mutator bracket as usual. The Lie algebra which
emerges will be denoted by pl{n, m;A). The argument
A (indicating the algebra A) is added in order to dis-
tinguish this Lie algebra from the complex general
linear graded Lie algebra pi{n,m) which has been de-
fined in Ref. 9. Recall that the elements of pl{z,m) are
complex (n+m)x(n+m) matrices written in the same
block form as the elements of M{n,m). The algebra
pllr,m;A) is obtained from pl(n,m) according to the
well-known rule: Multiply even elements of pl{z, m) by
even elements of A, odd elements of pl{n,m) by odd
elements of A, and consider all finite sums of the
matrices thus obtained. Formally this means that

Pl(n, m;A) = (A,® plln,m),) & (A, ® plln,m),),

where the commutator of two elements from the right-
hand side is defined by

(b® B,d® D|=bd® {(B,D), (2.20)

with be A;, Beplin,m),, de A,, Deplln,m)y; B, 6
e{0,1}. The bracket { ,) denotes the graded commutator
in pl{n,m). Note that according to this definition odd
elements from A “commute” with odd elements from
pln,m). Our discussion of the group PL(n,m) suggests
that pl{n,m;A) is the Lie algebra to be associated with

(2.19)
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the graded Lie group PL{xn,m). This is the more true
since in the case dimW <« the group PL(xn,m) is an
ordinary Lie group and pl(n,m;A4) is its Lie algebra.

We close this section with the definition of the graded
determinant.'® Starting from the decomposition (2.16)
it is not difficult to see that there exists a unique map-
ping detg of PL(n,m) into A, which has the following
properties:

detg(UV) =detg(U)detg(V) (2.21)
for all U, Ve PL{xn,m) and
detg{expX) = exp(TrgX) (2.22)

for all Xe M(n,m). It should be observed that the graded
determinant detg(U) is defined only for elements of
PL(n,m) and not on the whole of M(n,m).

If U=(¢) is an element of PL(xn,m) and if U-*=(% ¢)
is its inverse then

detg(U) = (deta){detd’). (2.23)

In particular we conclude that

a0 1

detg( >: (deta){detd) (2.24)
0 b

(if ¢ and b have an inverse), which is in general differ-
ent from det (¢ 7). Finally we observe that for all
Ue PL(n,m)

detg(TU) =detg(U), (2.25)

where TU denotes the graded transpose of U which has
been defined in (2.8).

3. GRADED LIE GROUPS ASSOCIATED WITH THE
SPECIAL LINEAR AND THE ORTHOSYMLECTIC
GRADED LIE ALGEBRAS (COMPLEX CASE)

Among the classical simple graded Lie algebras!'?
there exist two double sequences of algebras which are
particularly important for applications®-%; these are
the special linear graded Lie algebras spl(n,m) and
the orthosymplectic graded Lie algebras osp(n,m), m
even. Using the results of the preceding section it is
easy to define the subgroups of PL{x,m) which are to
be associated with these algebras.

To begin with we define the special linear graded
Lie group SPL(n,m) by

SPL(n,m)={UcPL(n,m)|detg(U) =1} (3.1)
and a subalgebra spl(r,m;A) of pl{n,m;A) by
spliz, m;A) ={X e pl(n,m;A)| Trg(X) = 0}. (3.2)

As an abbreviation let us also introduce the (ordinary)
Lie group

SPL,(,m)={U < PLy(n, m)|detg(U) =1} (3.3)
and the ideal spl, (n,m;A) of spln,m;A) by
spl, (e, m;A) =M, _(n,m)N spliz, m;A). (3.4)

Note that SPL,(n,m) consists of the block matrices
(3 %) with ac GL{n), be GL{m), det(a)=det(b). The alge-
bra spl{n,m;A) is obtained from spl(n,m) in the same
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way as pl(z,m;A) has been constructed out of pl(un,m),
ie.,

spl(n,m;A) = (4,® splin,m),) ®(4,® spl(n,m),). (3.5)

From (2.22) it follows that

exp(X)e SPL(n,m) for all X< splin,m;A). (3.6)

Conversely an element Uc PL(x,m) lies in SPL(n, m) if
and only if in the decomposition (2.16) we have

detg(U,)=1, Trg(U,)=0, (3.7

i.e., if and only if U,e SPL(n,m) and U, € spln,m;A).
We conclude that spl(n,m;A) is the Lie algebra to be
associated with the graded Lie group SPL(xn,m) and

that SPL(xr,m) is the semi-direct product of the ordinary
Lie group SPL,(z,m) with normal subgroup

explspl, (n,m;A)].

The orthosymplectic case is somewhat more inter-
esting. In this case we suppose that m is even, m =2y,
Let g be a symmetric nonsingular complex »X» matrix,
let 7 be a skew-symmetric nonsingular complex 27 X2y
matrix, and let G be block matrix

G:(g 0).
0 h
A natural choice is
g':I , h= 0 I,. ’
~1,0

(3.8)

where I, denotes the $ Xs unit matrix.

Then the complex orthosymplectic graded Lie algebra
osp{n, 27)*=*? is isomorphic to

osp(G) ={B e pl(r,2r)|"BG + GB=0}, (3.9)

where 7B denotes the graded transpose of B [see (2.8)].
Similarly we define the orthosymplectic graded Lie
group OSP(G) by

OSP(G) ={U e PL(n,27)|TUGU =G} (3.10)
and a subalgebra osp(G;A) of pl{z, 27;4) by

0sp(G;A4) ={Xe pl(n, 27;4)| "XG+ GX=0}.  (3.11)
Furthermore we introduce the ordinary Lie group

OSP,(G) ={Ue PL,(n,27)|TUGU =G} (3.12)

[this group is isomorphic to O(z, C)XSP (27, C)] and the
ideal osp,(G;A) of 0sp(G;A)

08p,(G;A) =M, (n, 27)N sp(G;A). (3.13)
The equation TUGU =G yields
detg(U)=x1 for all Uc OSP(G). (3.14)

For any X = (¢ {) € pl(n, 27;A) the condition TXG + GX =0
is equivalent to

tag +ga=0,
thh+hb =0,
teg+hn=0,

(3.15)

The following discussion is now completely analogous
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to the one for SPL. First we have

0sp(G;A) = (4,® 0sp(G),) & (4,® osp(G),). (3.16)
Next it is easy to see that
exp(X)c OSP(G) for all Xe osp(G;A). (3.17)

Finally an element Ue PL(x, 27) lies in OSP(G) if and
only if in the decomposition (2.16) we have

U,= OSP,(G), U, < osp,(G;A). (3.18)

Hence osp(G;4) is the Lie algebra to be associated with
the graded Lie group OSP(G). [Let us stress once again
that for dimW < the group OSP(G) is an ordinary Lie
group and that osp(G;A) is its Lie algebra. ] Further-
more, we see that OSP(G) is the semidirect product of
the ordinary Lie group OSP,(G) with the normal sub-
group explosp,(G;A)).

The elements of OSP(G) may also be described by the
properties of their Cayley transform. In fact, let
Ue PL(n,27) and suppose that the Cayley transform
S=(@1-0U)1+U)! does exist. Then U is an element of
OSP(G) if and only if S is an element of the Lie algebra
0sp(G;A).

4. ADJOINT OPERATIONS IN M(n,m) AND
“COMPACT FORMS” OF THE GRADED LIE GROUPS

Our next aim is to construct certain “compact forms”
of the graded Lie groups which we have obtained above.
These “compact forms” will be characterized by a
“unitarity condition.” Hence we shall consider first
some adjoint operations in the algebra M(n,m).

To begin with we choose an adjoint operation (of the
first kind) in the algebra A. This is a semilinear map-
ping @— a* of A into itself which satisfies

A¥ A, for @ ={0,1} (4.1)
and

{ab )y =b*a* 4.2)

a** =a, (4.3)

for all ¢,bc A. It follows that 1* =1,

To construct such an adjoint operation, we may
choose any semilinear mapping y —~ v* of W onto itself
which satisfies y** =y (i.e., an involution of the first
kind). Then there exists a unique adjoint operation of
A which extends this involution.

Given the adjoint operation a — a* of A we define as

usual an adjoint operation X — X* of M(n,m) by
X*=1tX* for all Xe M(n,m). 4.4)

Indeed, X — X* is a semilinear mapping of M (n,n) into
itself which satisfies

(4.5)
(4.6)

Xyy=vx",
X=X
for all X,Ye MGz, m).
Of course, all this is well known and is included only

in order to contrast it with a second type of adjoint
operations in M{z,m) that will be discussed next. To
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define these operations we start with an adjoint operation
“of the second kind” in the algebra A. This is a semi-
linear mapping a— @ of A into itself which satisfies

A* A, for a 0,1} (4.7
and

(ab)* = a*p*, (4.8)

¢*=(-1yc (4.9)

for all a,b= A and cc A,; v<{0,1}. Note that 1*=1.

Such an operation does not necessarily exist. How-
ever, if the dimension of W is even (which includes the
case where dimW is infinite), then the following con-
struction is possible. Choose any semilinear mapping
y—y* of W onto itself which satisfies y*=-y (i.e.,
an involution of the second kind; it is well-known that
this yields the structure of a quaternionic vector space
on W). Then there exists a unique adjoint operation of
the second kind in A which extends this involution,

Suppose now that the operation a— «* is given. Then
we define an adjoint operation X — X* in M(n,m) by

X*=TX* for all X= M(n,m) (4.10)

(where 7X denotes the graded transpose of X). In fact,
it is easy to see that X~ X* is indeed a semilinear map-
ping which satisfies

Xyy=r*x*
X* =X
for all X, Ye M{n,m). Note the close connection of
this operation with the grade adjoint operations as de-
fined in Ref. 11. The definitions (4.4) and (4.10) are

easily generalized to give an adjoint operation with
respect to some indefinite Hermitian scalar product.

(4.11)
(4.12)

It is now obvious to define the unitary graded Lie
groups UPL(n,m) [and, similarly, the special wnitary
gvaded Lie gvoups USPL(,m)]. In fact, we introduce
the subgroup UPL(n,m) of PL(x,m) by

UPL(n, m) ={Uc PL(n,m)| U* = U™}, {4.13)
the real subalgebra upl(n,m;A) of pl{n,n;A) by

upl (e, m;A) ={X & plln,m;A) [ X* = ~ X}, (4.14)
the ordinary real Lie group UPL(2,m) by

UPL,(n, m)={Uc PL (e, m) | U* = U1}, (4.15)
and an ideal upl (2, m;A4) of upl(n, m;A) by

upl, (2, m34) =M (r,m) " uplln, m;A). (4.16)

As in the preceding section we conclude then that
upl(nz, m;A) is the Lie algebra associated with the group
UPL(n,m). Furthermore, this group is the semidirect
product of the ordinary Lie group UPL,(z,m) [which is
isomorphic to U() X Ulm)] with the normal subgroup
exp(upl, (7, m;A)). Finally, if U is any element of
PL(n,m) whose Cayley transform S does exist then U
belongs to UPL(n,m) if and only if S lies in upl(uz,ni;A4).

Literally the same discussion can be carried out if
we work with the adjoint operation X — X* instead of
X— X*. Hence we obtain two different types of unitary
graded Lie groups. At present we do not know of any

V. Rittenberg and M. Scheunert 712



connection between these two cases. Dealing with the
unitary graded Lie groups one might prefer the adjoint
operation X — X* however.

In the construction of a “compact form” of the ortho-
symplectic groups only the adjoint operation X — X* will
work. The reason is that on the graded Lie algebra
osp(n, 2¥) there does not exist an adjoint operation de-
fining a compact form of the Lie algebra osp(n, 27),
=0(n) xsp(27) (see Ref. 11).

Let us now construct a “compact form” of the ortho-
symplectic group OSP(G). To avoid the possible com-
plication of having to modify our definition of the ad-
joint operation we shall assume that the (complex) me-
tric matrix G={( ) is unitary. Then it is easy to see
that the adjoint operation X — X* (which is assumed to
exist) maps OSP(G) and 0sp(G;A) into themselves.

Hence we define the group
UOSP(G) ={U < PL(n,27)|TUGU =G, U*=U"}, (4.17T)
the Lie algebra.
uosp(G;A) ={X  pl(n, 27;4) | TXG + GX =0, X* = - X}
(4.18)

and, similarly to the earlier cases, the ordinary Lie
group UOSP,(G) and the ideal uosp,(G;A).

Then uosp(G;A) [which is a real form of osp(G;A)] is
the Lie algebra associated with the group UOSP(G) and
this group is, once again, the semidirect product of
the ordinary Lie group UOSP.{(G) [which is isomorphic
to the compact Lie group O(n) xSP(2+)] with the normal
subgroup expluosp,(G;A4)}. Of course, for {ixed dimen-
sions #, 27 all the groups UOSP{G) (with G unitary) are
isomorphic.

5. CONCLUSION

In this work we have constructed the general linear,
the special linear, and the orthosymplectic graded Lie
group, their “compact forms,” and the corresponding
Lie algebras. The “parameters” were taken from an
exterior algebra A=+ W. To prepare our constructions
we have first extended the usual matrix operations to
the algebra M(n,). Once this had been done we could
proceed as in the ordinary cases. All the graded Lie
groups that we have obtained are semidirect products
of an ordinary Lie group with a normal subgroup that
“depends only on the Grassmann variables”. It should
be stressed that in the case dim W <= our groups are
ordinary Lie groups. In the construction of “compact
forms” two special features make their appearance.
First, we find two types of adjoint operations and, con-
sequently, two types of unitary groups. Second, in this
construction it is not the real forms of the graded Lie
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algebras which are important but rather the adjoint
resp. grade adjoint opeations as defined in Ref. 11. In
fact, in the orthosymplectic case a real form of

osp(n, 27} containing a compact form of the complex

Lie algebra osp(n, 27), = o(n) X sp(27) does not even exist,

We would like to suggest to the reader to consider
the group OSP(1,2) as an example. In fact, in this case
everything can be worked out explicitly in a trivial
way.

it is obvious from our considerations that the defini-
tions of the general linear, the special linear and the
orthosymplectic graded Lie groups are completely
analogous to those of the general linear, the special
linear, and the orthogonal'? and symplectic Lie groups,
respectively. The same holds true for the “compact
forms” apart from the fact that two different types of
unitarity conditions are possible.

From the multitude of questions which are suggested
by this work let us only mention the following. Is there
any connection between the two types of unitary graded
Lie groups? What is the bearing of the unitary graded
Lie groups on the representation theory of graded Lie
groups ?18
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Asymptotic simplicity is stable®

Robert Geroch and Basilis C. Xanthopoulos
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Consider an asymptotically simple solution of Einstein’s equation. It is shown that any internally
generated, first-order perturbation of the metric, as a consequence of the linearized Einstein equation,

preserves asymptotic simplicity to first order.

1. INTRODUCTION

There is available' in general relativity the notion of
an asymptotically simple space—time. The definition
requires, roughly speaking, that it be possible to attach
to the space—time manifold M a boundary “at null in-
finity” such that a certain conformal rescaling of the
physical metric ¥, results in a metric having a smooth
extension to that boundary, and such that the corre-
sponding conformal factor have specified asymptotic
behavior, i.e., specified behavior on that boundary.

It is intended that asymptotic simplicity capture the
physical idea that one has an isolated system—that in
particular any deviations of the space—time metric
from flatness can in some sense be attributed to the
presence of that system. Thus, for example, it is a
consequence of the definition that the space—time metric
approach a flat metric in the asymptotic limit far from
the system. There are essentially two pieces of evidence
that the detailed definition is in fact an appropriate one
for the physics it is intended to represent. First, as-
ymptotie simplicity has turned out to provide a partic-
ularly natural framework for a number of important
and useful notions in general relativity: Bondi energy—
momentum 2 radiation fields and in particular their
peeling behavior, the Newman—Penrose conserved
quantities,® cosmic censorship and the global structure
of black holes,* the BMS asymptotic symmetry group,
ete. Second, it has been found that various known exact
solutions which seem intuitively to represent “isolated
systems” —such as Minkowski space, the Schwarzs-
child, Kerr, and certain Weyl solutions (all with ap-
propriate sources)—in fact satsify the conditions for
asymptotic simplicity. Unfortunately, this evidence
taken as a whole is perhaps not as strong as one would
like. In particular, as a resulf of the relative scarcity
of known exact solutions of Einstein’s equation, the
class of examples on which one can test the definition
is not large. Thus, for example, even though the for-
malism is to provide the basic framework for the de-
scription of radiation in general relativity, there is no
known exact, radiating, asymptotically simple solution
of Einstein’s equation.

We here consider a third test of the definition. Con-
sider an asymptotically simple solution of Einstein’s
equation, with bounded source. Let there be introduced
a {irst-order perturbation of the metric, generated,
say, from a bounded source. Then, as a consequence of

aGupported in part by the National Science Foundation under
contract number PHY 76-81102 with the University of
Chicago.
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the linearized Einstein equation, this perturbation will
radiate to infinity. One can now ask whether, under
this arrangement, asymptotic simplicity will continue
to be satisfied to first order in the perturbation.? One
is asking, then, whether asymptotic simplicity is stable
in a certain sense.® One is vastly enlarging the class
of examples on which to test the definitipn, at the
price of carrying out that test only to first order.®
Were asymptotic simplicity unstable to such internally
generated perturbations, then the definition would pre-
sumably have to be modified. We shall show stability.

Our result has a couple of other implications. Each of
the various asymptotic constructions can be carried
out only in the presence of a certain degree of smooth~
ness of the conformally scaled metric. The Newman—
Penrose quantities, for example, require C°. The issue
of which of these constructions are likely to have
physical significance thus becomes: What degree of
smoothness is physically realistic? It appears to be
difficult to answer this question directly, for the
translation of “the unphysical metric is » times con-
tinuously differentiable” in terms of the physical metric
results in an awkward statement having little direct
physical meaning. The present result will rather sug-
gest that a reasonable differentiability condition on the
conformally scaled metric is “C®”. Second, we provide
a gauge for the metric perturbation along with a guar-
antee that, in this gauge, the perturbation will be well-
behaved asymptotically. It is easy to derive from this
other gauges within which one can work, and to show
that in certain other gauges one cannot work, in
“linearizing” various asymptotic constructions.

2. THE STABILITY THEOREM

Let M, g, be a space—time, i.e., M is a smooth
(c*) 4—manif01~d and Z,, is a smooth metric of Lorentz
signature on M. This space~time is said to be asymp~
totically simple” if there exists a smooth manifold with
boundary, M =AM U I, consisting of M with boundary I
attached, together with a smooth Lorentz metric g,, on
M and a smooth scalar field £ on M, such that:

1. OnM, g,=0%,.

2. At points of I, 2 vanishes and its gradient is non-
zero and null.

3. Every maximally extended null geodesic in M has,
in M, two end points on I.

The first condition requires that the unphysical met-
ric, g,, be a conformal scaling of the physical, Eab;
the second specifies the asymptotic behavior of the con-
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formal factor (essentially, that Q@ vanish asymptotically
“as 1/7”); the third ensures that the entire boundary at
null infinity has been attached to M in obtaining M.

We shall be concerned principally with regions in
which the physical metric, g ,, satisfies Einstein’s
equation with zero source. This equation, expressed in
terms of the unphysical metric g, using condition 1,
is

QR +2V 0, +(V_n" - 32 wm)g, =0, (1)

where indices are raised and lowered with g, and its
inverse, V, is the derivative operator compatible with
Z4» R, is its Ricei tensor,® and where we have set
n,=Vv §.

Let ¥ , e a first-order perturbation of the phys1ca1
metrlc gab The linearized Einstein equation on yab,

expressed in terms of the corresponding perturbation,

=Q% ,, of the unphysical metric, is

v? Yap = 2v (aV"‘)/b) -V V - 2Ram ¥t 2R™ @ orm

- 20 tym s (2V v, yn)-

-2
@~ m (ZQ nmnm

+3R) (v, +3Y™, 0 g,,) + (R™y,

.
m Lal)

+imY yn =27y, Ve gt GQ‘zn’"n"Ym,, *Ea

(2)

where V2 =g%V _v,. We have the freedom to perform
gauge transformatmns The fields 7/ and y (agb,,
where gb is any vector field on i1, represent the same
physical perturbation. In terms of unphysical fields, a
gauge transformation replaces vy, by

Yar ¥RV (o &y, T 20,8y, - e, g, - (3)

A symmetric ;a,, on an asymptotically simple space—
time will be said to be asymptotically vegular if y,,
=0, has smooth extensmn from M to M and, under
this extension, y,,n*n® vanishes at I. These conditions
will be recognized as the linearizations of the conditions
in the definition of asymptotic simplicity, i.e., they
guarantee that “asymptotic simplicity is preserved to
the first order in the perturbation. ” Indeed, condition
1 is reflected in the definition of ¥,,; the vanishing of
2 and the nonvanishing of its gradient at / in condition
2 are metric-independent; the nullness of the gradient
of £ in condition 2 is reflected in the vanishing of
¥,u1°n?; that condition 3 be preserved to first order
follows from the others, since null geodesics are con-
formally invariant.®

Our result is:

Theorem: Let 1171, grab be an asymptotically simple
space—time (with M, 1, g,,,Q), and let ¥, be a smooth
symmetric tensor field on M. Let, in some neighbor-
hood of I, grab satisfy Einstein’s equation with zero
source and ¥, the linearized Einstein equation. Let
7 vanish outside of some compact subset of some
shce of M. Then, possibly after a gauge transforma-
tion, yab is asymptotically regular.?

That ¥, satisfy the linearized Einstein equation, i.e. s
that y,, satisfy (2), in a neighborhood of I ensures that
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the perturbation field reaching I will be “a true radia-
tion field, which evolved to I from within the space—
time.” The theorem is, of course, false without this
condition: Choose, in Minkowski space—time, any ?ab
very badly behaved asymptotically. The condition that
?ab vanish outside a compact subset of a slice prevents
one from sending in y-radiation from past infinity
whose intensity increases into the future. Such radia-
tion would “pile up” on future infinity, and could (e.g.,
in Minkowski space—time) destroy asymptotic regularity
there. The theorem would also be false thhout ‘after

a gauge transformatlon” E.g., yab_v gb) in Minkowski
space—time, with gb badly behaved asymptotlcally, will
not be asymptotically regular. We shall actually prove
slightly more than is stated in the theorem, namely
that, possibly after a gauge transformation, one can
have not only asymptotic regularity, but even the van-
ishing of y,, at I, with, furthermore, ¥ _n™ vanishing one
order faster and Yma?¥M" vanishing one order faster
still. That is to say, the metric perturbation can be
made to satisfy somewhat stronger peeling conditions
than one might a priori have expected.

Statements analogous to that of the theorem can be
made for other fields. For the conformally invariant
fields, the analogous statements are both true and
easy to prove. We sketch, for the scalar case [(V2—1R)
©=0], the proof.® Let asymptotically simple i, &,
be given. First fix an extension of the manifold with
boundary M through its boundary I to a manifold without
boundary M, and smooth extensions of g, and Q to #1.
Then n*=v°Q is, at I, a nonzero null normal to I, and
in particular is tangent to I. Let p be any point of, say,
future null infinity, I* (Fig. 1). The integral curve of
—n® from p is directed into the past, and remains in I*.
Since @ vanishes outside a compact subset of a slice,
this integral curve will eventually reach a point g of I*
in some neighborhood of which @ vanishes. Fix a small
neighborhood § in I* of this segment of the integral
curve between p and ¢, so S is a null 3-submanifold of
M. We next “tip” S slightly to obtain a spacelike 3~
submanifold S,, as shown in the figure, which meets
¢ and which is well away from any source for ¢. Since
our equation on @ is conformally invariant, we have,
on ¢ =r'y, the equation (v2 -+ R)p=0. By construc-
tion, @ vanishes in a neighborhood of S,N I, i.e., Q is
bounded away from zero in the intersection of the sup-
port of ¢ and S,. Hence, ¢ and its first normal deriva-~
tive on S;, the initial data for our wave equation, will

FIG, 1. The geometrical
arrangement for establishing
smoothness of certain fields
at I, The null, three-dimen-
sional surface S lies in future
null infinity 7*, while S; is a
nearby spacelike submani-
fold passing through point ¢,
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be smooth on S,. We thus have smooth initial data on
S, for a field satisfying an equation with a well-posed
initial-value formulation, and so, since p is in the
future domain of dependence of S, in M, ¢ must be
smooth at p. Since p on / is arbitrary, asymptotic
regularity (meaning, for this case, smoothness of ¢ at
I) follows. The situation for other fields, and for cer-
tain coupled fields, is discussed in Sec. 4.

The idea is to prove the theorem for the present case,
gravitation, by an argument similar to that above. What
makes the gravitational case more difficult than the
scalar is two features: (i) The equation for the per-
turbation is not conformally invariant, and (ii) one
must show regularity of the “potential,” y,,, and not
just the “field,” or, what is the same thing, one must
contend with the freedom of gauge transformations. In
more detail, what one must do is find a set of fields
constructed from (say, linear in) Y. together with a
set of gauge conditions on y,,, such that the following
conditions are satisfied: (i) Smoothness of the fields at
I implies asymptotic regularity, (ii) the gauge condi-
tions can in fact be realized by means of a gauge trans-
formation (3), and (iii) when Eq. (2) is rewritten, pos-
sibly using the gauge conditions, as a system of dif-
ferential equations on these fields, the resulting system
admits a well-posed initial-value formulation in some
sense which makes the proof work. The exhibition of a
set of fields and gauge conditions with these three
properties, we claim, will complete the proof.

It turns out that the choice of fields and of gauge con-
ditions is a rather delicate business. Suppose, for ex-
ample, that one made the obvious choice: Let the field
be v, itself, and impose on ¥, its Lorentz gauge con-
dition, v7(y, —%prgM):O. Then Eq. (2), since the
first terms on the right now vanish, is a hyperbolic
differential equation for y,. Unfortunately, this equa-
tion does not have a well-posed initial-value formula-
tion in the necessary sense, for some coefficients on
the right involve inverse powers of €, while we must
apply the equation in a region of M in which goes
through zero. One might therefore proceed by intro-
ducing additional fields in which these inverse powers
are incorporated, e.g., for the last term on the right,
the field u =2y _ »™»", in terms of which this last
term becomes simply 6 #g,. Now, however, we re-
quire an equation for u. Contracting (2) with »®®, we
indeed obtain an expression for V2 y in terms of our
fields and their first derivatives, but, again, more
terms in inverse powers of € appear. One might there-
fore introduce additional fields and/or further gauge
conditions. As far as we are aware, this process does
not terminate. Our naive initial choice, in short, does
not work.

3. THE PERTURBATION FIiELDS

A choice which, as we shall show, does work is the
following. Let the fields be

—0O~l..m — gmn
T,=n",, T=&""T,.,

— Ol
Tab = Yav»

o=1 (n”"rm + %n’"Vm T+ 3f1), (4)

and let the gauge conditions be
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Ye=Vm7, =V, 17-37,=0, )
(v, +LQR +3f)V3r

= & RfT =37V = §Rumr +4Q71C, T, 6)

where we have set f=®'n*n,, C_,,, is the Weyl tensor.

We now claim that these fields and these gauge con-
ditions do satisfy the three properties required in the
previous section. Indeed, the first condition (that
smoothness of the fields implies asymptotic regularity)
is immediate, since smoothness of 7, alone implies
smoothness of (and also vanishing of) 7, at I, so,
vanishing of n"nb)’ab at / too. For the second condition
(realizability of the gauge conditions), we first compute,
from (3), the changes in the fields y, and 7 under a
gauge transformation:

5y, =QVU"V £, (7
5T=QV_g"—2n " ®)

Taking the trace of (2), substituting (5), we obtain
v,('y?)=0. Hence, from (7), one can always find a
gauge vector £ such that y =0, i.e., such that our
gauge condition (5) is satisfied.'® We must still realize
(6). The gauge condition (5) is preserved by any further
gauge transformation (3) with §,=V,t. We now demand
of this scalar field ¢ that (6) be satisfied, There re-
sults, by (8) and (3), a differential equation of the
form:

v+ QR+ 3 AVE[02 (V2 - LR)( 1)]]

=terms involving £ only linearly in its value and the
values of its first two derivatives. (
9)

But this equation admits a solution £, by the Appendix.
[Let, for application of that theorem, the fields be F,
=Q'g, F,=VF,, F;=VF,, F,=QV*-1R) F,, F,
=VF,, and H =V?F,, The equations for the F’s are
those which result from these definitions; for H,, Eq.
(9).] We conclude, then, that our gauge conditions, (5)
and (6), can in fact be realized by means of a gauge
transformation.

There remains only the verification of the third con-
dition [that our fields (4) satisfy, under (5) and (6),
equations with a well-posed initial-value formulation].
The situation here is, of course, somewhat more
delicate than that of the previous paragraph: Whereas
the gauge conditions need only be imposed in the phys-
ical space—time, the present initial-value formulation
must be applicable in the extended unphysical space—
time, i.e., even as 2 goes through zero. We claim
that, from (2) using (5) and (6), the fields (4) satisfy
the following system of equations:

2. 1
vi7, =V, V,T1+4V 7, ~2C . 7"~ 5RT,

1
+5R7g, — TR, 2R, (T, — 208,

(10)
v?7,=2V _0+3R, VT +%RY,T-R"™V 1 -%7,V'R
+27" R, +27mR, +3RT,++ TV.R, (11)
V0= —{R""Y V 7 2R™V 71 - (VPR)(V T)+RO
+% R*7 ~ 37,R® RM™ - 37"V R. (12)
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Indeed, (10) follows from (2), eliminating v,,, using

(4) and then using the gauge condition (5). Equation (11)
follows from (10}, contracting with »*; and (12) in turn
from (11), contracting with »* and using the gauge con-
dition (6). We next claim that the system of equations
(10), (11), (6), and (12) for the respective fields (4) has
a well-posed initial-value formulation. First note that
all of the coefficient fields on the right in these equa-

tions are smooth in the extended unphysical space~time:

Smoothness of f follows from the definition of asymp-
totic simplicity; of 9-1C,, n® by taking the curl of (1).
But we now have a system to which the Appendix is
applicable. Let, for that theorem, the fields be F,
=T,y Foa=7,, Fy=0, Fy=17, F,=VF,, and H,=V?F,,
The equations for F,, F,, F,, and H, are (10), (11),
(12), and (6), respectively, while the equations for F,
and F, come from the definition of H . By the Appendix,
then, our system has a well-posed initial-value
formulation.

This completes the proof of the theorem.

The present choices of perturbation fields and gauge
conditions are rather complicated. We describe briefly
how these choices arise. First, one knows that, in an
asymptotically simple space—time, the value of the
unphysical metric g, at I is purely kinematical, i.e.,
that it tells one nothing about the particular space~
time under consideration. This observation suggests
that one demand that the perturbation, ¥, , of the un-
physical metric vanish at I, i.e., that one choose for
one’s perturbation field the 7,, given in (4). Replacing
¥, 10 (2) in favor of 7,,, and eliminating divergences of
7., in favor of y_, one obtains (10)—but with some addi-
tional terms on the right involving negative powers of
Q. These terms can, however, be eliminated by the
gauge choice (5)—a choice further suggested by the
observation that if 7, and @'y, are smooth at I under
some gauge choice, then (5) will not destroy smooth-
ness of 7,,. We now have our equation, (10), for Taps
an equation which, however, has two unsatisfactory
features: (i) Its right side involves 7, and o, fields the
smoothness of which does not follow from that of 7 ,,
and (ii) its right side involves second derivatives of
7, whence the equation is not even hyperbolic. The
resolution of (i) is to introduce 7, and ¢ as fields in
their own right, subject to their own equations. On 7,
one has Eq. (11), and so there remains only the intro-
duction of an equation on ¢ and the resolution of (ii).
Contracting (11) with #°, we obtain the equation given
by the sum of (12) and -~ 292 times (6). One now wishes
to resolve this equation into two, by separating its
terms into two groups and equating each group to zero.
One of these equations is to be a gauge condition and
the equation for 7 [ultimately, (6)]; the other, the equa-
tion for o [ultimately, (12)]. This grouping of terms,
however, must be carried out in such a way that the
Appendix be applicable, i.e., such that (i) only terms
having an external factor of € be grouped with “Qv?¢,”
in order that the V2o equation have smooth coefficients
on the right, and (ii) no terms involving derivatives of
our fields be grouped with “(»™v_+4QR +£/)Vv37,” in
order that the presence of second derivatives of 7 in
(10) not destroy hyperbolicity. But such a grouping
turns out to be possible. {There are many. ]
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4, CONCLUSION

Statements analogous to that of the theorem of Sec. 2
can be formulated for fields other than gravitation.
Their general form is that, given the field satisfying
its equation, then, subject to suitable global safeguards,
an appropriate unphysical (i.e., rescaled) version of the
physical field admits a smooth extension to I. As we
have seen in Sec. 2, for the conformally invariant fields
(scalar, neutrino, electromagnetic—there are, of
course, no higher spin fields in curved space—times),
these statements are true. A similar argument works
for the conformally noninvariant, mass-zero scalar
field (¥2¢ =0).! For the case of the various massive
fields (spins 0, %, and 1}, the situation is less clear.
One would have expected, both on physical grounds
(massive particles cannot reach null infinity) and from
an examination of behavior in Minkowski space, that,
not only would such fields be asymptotically regular,
but also that the unphysical field itself would vanish on
1. However, a naive attempt to adapt the present argu-
ments to these cases fails. The mass-term acquires,
under the conformal transformation, a coefficient in-
volving a negative power of £, while there seems to be
no obvious mechanism for eliminating it. Thus, while
surely asymptotic regularity must hold for these mas-
sive fields, a proof is apparently lacking.

One can also formulate statements analogous to that
of the theorem for various systems of coupled fields.
The general rule seems to be that the equations used
to show asymptotic regularity of the individual non-
interacting fields, when modified to include the coupling
terms, suffice to show asymptotic regularity of the
system of interacting fields, Consider, as an example,
the coupled Einstein—Maxwell system. Since the Max-
well stress—energy has vanishing trace, one can still
impose the gauge condition (5) on the gravitational
perturbation. Impose also (6). Then the system of
equations for the gravitational perturbation, (6), (10),
(11), and (12), is modified only by the inclusion of addi-
tional terms on the right involving the background
Maxwell field and its perturbation. Similarly, as a con-
sequence of Maxwell’s equations, the perturbation of
the Maxwell field satisfies an equation in which only the
perturbation of the gravitational field and its derivative
appear on the right. No coefficients on the right of
either equation, however, involve inverse powers of
2, i.e., these coefficients are smooth at I. The result,
then, is a system of equations on the unphysical per-
turbations to which the Appendix is again applicable,
One thus shows asymptotic regularity for this system.
One can apparently treat in a similar way more com-~
plicated coupled systems. There is, however, one
anomalous case: that of the coupled Einstein-conformal-
ly invariant scalar field. The problem here is that the
stress~—energy of the scalar field involves second de-
rivatives of that field, whence, since that stress—en-
ergy appears on the right in the gravitational equations,
one does not even obtain a hyperbolic system. This dif-
ficulty, however, seems to be inherent in the structure
of conformally invariant scalar fields: Indeed, it is ap-
parently not known whether the coupled Einstein~con-
formally invariant scalar system admits a well-posed
initial-value formulation in the physical space—time,
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We have here treated only the case of first-order
perturbations in the gravitational case, i.e., it is only
to this order that we have shown preservation of as-
ymptotic simplicity. One might imagine looking for a
generalization to the full non-linear case. It seems,
however, to be difficult to even formulate the question.
One might, for example, try to introduce a suitable
topology on a space of initial-data sets for Einstein’s
equation, and then attempt to show that, in this topology,
the collection of initial-data sets which evolve to an
asymptotically simple space—time is open. The prob-
lem seems to be that, given the nonlinear character of
Einstein’s equation, it is extremely difficult to charac-
terize structural properties of the evolved space—
time in terms of just the initial data. A much more
tractable question would be to ask whether or not as-
ymptotic simplicity is preserved in the gravitational
case to orders higher than the first. It seems likely that
one could obtain a positive result to any given order #,
although—at least in the absence of some understanding
of what makes the first-order case work—the computa~
tions, even at the second order, will become extremely
messy.

The present choice of fields and gauge~conditions is
rather complicated—and in particular this choice
seems to shed little light on why any choice at all
should work or how asymptotic simplicity came to en-
joy this stability property. The discussion at the end of
Sec. 3 suggests that at least to some extent these com-
plications are inherent in the problem. But Einstein’s
equation is basically so simple: There must be some
way to see what mechanism is operating here.
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APPENDIX

Theovem: Let M, g, be a smooth (C*) space—time,
t a smooth scalar field on M which has everywhere
timelike gradient and which assumes all values in the
interval (- 1, +1), and »? a smooth vector field on M
with n#v t <0. Let it be the case that along every maxi-
mally extended timelike curve in M and along every
maximally extended n®~integral curve in M, { assumes
all values in (-1, +1).

Consider, on tensor fields F,...,F, and H,,...,H
on M, the following system of partial differential
equations:

v?fF,={1,F ,H ,VF, ,VH} (=1,

v H ={1,F, H} (j=1,...,q),
where V denotes the g, -derivative operator, V? the
£,,-Wave operator, and where the curly brackets on the
right denote linear combinations (possibly different

combinations for each ¢ and j), with coefficients given
smooth fields on M, of the enclosed fields.

(a1)
(A2)

-»b),

Then this system of equations has a well-posed initial-
value formulation, in the following sense: Given smooth
values for the F’s and their first normal derivatives,
and for the H’s, on the spacelike 3-submanifold S,
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given by ¢ =0, there is a unique smooth solution of (A1)
and (A2) on M which induces on S, this initial data.

The conditions of the first paragrah require essential-
ly that the submanifolds of constant / be spacelike,
transverse to #%, and finally suitable initial-value sur-
faces for our system of equations. The proof is a
standard iteration argument using Sobelev spaces, We
merely sketch it,

For any ~1<a<0<p<+1, denote t[a,b] by U,,,.
Fix any smooth positive-definite metric on M. Denote
by W%, where k is any nonnegative integer, the
Sobelev spaces of index k in U_,,, i.e., the Banach
spaces of tensor fields of various ranks defined in U_,,,
where the norm takes the integral over U, of the
sum of squares, using the positive-definite metric,
of the fields and their first k derivatives.'? The solu-
tion at any point of M will depend only on the initial
data in a compact subset of §,, and the coeificients
on the right in (A1) and (A2) in a compact subset of
M. No generality is lost, therefore, by assuming that
M is an open submanifold with compact closure of
a larger manifold, that the metrics, »*,f, the co-
efficients on the right in (A1) and (A2), and the initial
data are induced from corresponding fields in this
larger manifold, and that the conditions of the first
paragraph of the theorem are there satisfied. Fix
sufficiently large k.

Consider first the system which results from (A1) and
(A2) by restricting to U_,, and replacing the right sides

ardh
with given fields f, in szb and h, in Wk, respectively.

Then, with our given initial data, this system has a
unique solution (F,-,Hj)e We .7 Furthermore, there is
a constant ¢, depending only on the metrics, n®, and /,
such that, for (F.”,H,’) the solution for right sides

i )
(f,-, ] hjl)’

WE) = F )l < b - alify = £l

WA, ~Hll < cb-allr/ —n, (A3)

where the norms are in the appropriate Sobelev
spaces.

We next note that, for (F;,H ) in W the right sides
of (A1) (resp., of (A2)) are in W’;’; (resp., in W* ) and
that the norms in these Sobelev spaces of the respec-
tive differences of these right sides for (F,’,H,’) and
(F;,H,) do not exceed dil(F/ ,H) - (F,,H)Il, for some
constant d. Choose (b —a) sufflclently smau that
de(b—a)<1. Denote by W the Sobelev space of (F;,H,)
in W . Let } be the mapping, whose existence is now
guaranteed from W to W which sends (F,,H,) to that
(F, H)-pair which solves (A1) and (A2) with the right
sides evaluated on the given (F'.,Hj). Qur choice of
(b — a) ensures that this ? is a contraction mapping on

the Banach space W. Hence, there is a fixed point.

We conclude, then, that for sufficiently small (b — @)
[this size determined by the metrics, f, n®, and the
coefficients in (Al) and (A2)], there is a unique solution
of (A1), (A2) in W},. Repeating the argument for suc-
cessively larger and smaller initial ¢ values, there is a
unique solution in M in W%, Since k is arbitrary, there
is a unique smooth solution in M.
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Note added in proof: In light of R, Geroch, G.T.
Horowitz, Phys. Rev. Lett, (to appear), it would
perhaps have been more appropriate to include in the
present definition of asymptotic simplicity the additional
condition that, in the Q-gauge in which vz, =0, »* be
complete on I. In fact, the present perturbation, as a
consequence of the vanishing of v, and of Q'in"nb’)'a,, onl,
preserves to first order both the completeness of »®
on /I and this gauge condition,

iR, Penrose, Phys. Rev. Lett, 10, 66 (1963),
’R. Geroch, in Asymplotic Structure of Spacetime, edited by
F. P, Esposito and L. Witten (Plenum, New York, 1977),
p. 60, also, pp. 12, 39,
3. T, Newman and R, Penrose, Proc, Roy. Soc. A 305, 175
(1968),
43, W, Hawking, Comm, Math, Phys. 25, 152 (1972),
5This “dynamical stability” contrasts with what might be
called the “kinematical stability” of D, Lerner and J, R,
Porter, J, Math, Phys, 15, 1416 (1974), in which one seeks
a topology on a certain space of metrics with respect to
which the set of asymptotically simple metrics is open,
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8This situation may be contrasted with that at spatial infinity
[Ref. 2, p. 72 or A, Ashtekar and R.O. Hansen (preprint
1977)]. No similar test is available there, since perturba-

tions do not propagate to, and hence do not affect, spatial
infinity, The result is that, on the whole, the evidence in
favor of various definitions of asymptotic flatness at spatial
infinity is less firm than at null, and, indeed, there still
remains some controversy regarding the correct conditions
for the former,

'S.W. Hawking and G.F, R, Ellis, The Large Scale Structure
of Spacetime (Cambridge U,P., London, 1973}, pp. 222, 243,

80ur conventions are, for the Riemann tensor Vi, Vy,X,
=%Rabchm and R;,=R,,," and R=R,",

%0One might have thought it necessary to allow also a perturba-
tion of the conformal factor. This, however, is unnecessary,
for a first-order change in @ c¢an be absorbed into v,, by
gauge,

10That is, one can solve for a vector potential in the presence
of a divergence~free current. A proof is immediate, for
example, from the appendix, demanding V,£%=0 and using
the single field Fy?=¢¢,

1 the electromagnetic case, there is available an alterna-
tive argument which is perhaps more analogous to that of the
gravitational case. One introduces a vector potential as the
“field,” and imposes on it a suitable (the Lorentz, in the
unphysical space—time) gauge condition,

123, Marsden, Application of Global Analysis in Mathematical
Physics (Publish or Perish, Boston, 1974), p. 50,
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Branching rules for the subgroups of the unitary group?

D. Braunschweig and K. T. Hecht

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109

(Received 31 August 1977)

Expressions are given in terms of simple matrices d for the reduction of the Kronecker (outer) product of
two or more irreducible representations which can be characterized by Young patterns. These are then
used to obtain practical formulas for branching rules. The needed matrices d can be constructed by a very

efficient recursive process.

1. INTRODUCTION

The effective use of group theoretical methods in
atomic and nuclear shell model calculations requires
that the many-particle states be classified according
to the irreducible representations (IR) of the unitary
group and its subgroups.' These IR may conveniently
be labeled by their permutation symmetry in terms of
Young patterns.? The knowledge of the relevant branch-
ing rules appropriate to the subgroup chain under
consideration is usually needed at some step in the
calculations,

Therefore, it is not surprising that considerable
effort has been expended in finding practical ways of
determining these branching rules, and numerous
tabulations are available.® The plethysm of S functions
has been used to obtain branching rules,® but except
for simple cases the procedure becomes cubersome, ?

The problem of calculating branching rules and the
resolution of the Kronecker (outer) product can be
simplified greatly if advantage is taken of the systematic
decomposition of Young patterns into their completely
symmetric or antisymmetric components. The simpli-
city gained thereby allows us to obtain the resolution of
the Kronecker (outer) product of more than two patterns
directly, which becomes an essential part in the evalu-
ation of branching rules.

Our method is applicable to any set of subgroups
whose IR can be labeled by Young patterns, and
furthermore it is well suited for desk top calculations.®

2. NOTATION
We denote by [A]" the partition

K1+/\2+"'+7\n:na )&1>A212“'}?7\n»\10 (1)

of the integer n. With this partition [A]* we associate in
the usual manner’ a Young pattern with A, boxes in the
first row, X, boxes in the second row,..., etc. We say
that a partition [1]" is of lower symmetry than [A]" if
the first nonzero difference (1, — 1,) is negative. This
allows us to order the p(n) partitions of # in order

of decreasing symmetry, such that if ¢ > j, than [x]g is
of lower symmetry than [A]?, In what follows we denote
by A}, the number of boxes in row s of partition number
7.

DWork supported by U.S, National Science Foundation,
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We denote by [)N\];' the partition conjugate of [A]?
obtained from [A]7 by interchanging rows and columns.
3. DECOMPOSITION OF PATTERNS

In this section we introduce the decomposition of
patterns into their completely symmetric or anti-
symmetric components,

With each pattern [A]g we associate an antisymmetric
factor pattern A([A]?) such that

A([)\]?):[liu]x[li}i]x e x[]i'xli], (2)
For example, if [x]1=[43221], then

A([A]E’):A(@}‘):%x @xBxD . o

The products on the right are the Kronecker (outer)
products of pattern multiplication which can be evaluated
using Littlewood’s rules.’

Given a pattern [A];' we may set up the system of
linear equations

o{n)
A7 :%,(1;};[,\];, Fe=i,i+1,...,p00), {4)
or inversely,
tvin)
=2 epr AR, k=i, i+1,..., pla), (5)
j=i

where

e = (=

ant (6)

is the cofactor of the matrix element (I;’Q.

As an example we give in Fig. 1 the matrices d7;
and ¢} for n=5.

In complete analogy with the above we can associate
with each pattern [A]} a symmetric factor pattern
S({A]?) such that

SOy = [y hxiag, s o< L (1)
For example, if [A]]={43221], then

S([A];‘):S(E?Z>ZDID X (IO X [ ¥ O <0 - (8)

Again we may set up the system of equations
1

S = 2oars [A,

k=1

J=1,2, ...,

2

or inversely,
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5S
ij

[11111] ] ]
[2111] 1 -1 1
[221] 1 1 0 -1
(311] L
[32] 1
(4] 1
[5] !

-1t

1
L 1 -2

=W NN
viw N —
o W
woN

i

[A];:_Zlcgfs([x];), k=1,2,...,1i. (10)
fys

If we adhere to the convention that whenever we use

antisymmetric decomposition we order the patterns

in order of decreasing symmetry, while when using

symmetric decomposition we order them in order of

increasing symmetry, we obtain the result

nA __ gqnS
and djp =djy,

nA _ .nS
& = Crjs

(11)

which allows us to drop the superscripts S and 4 from
here on.

c

Since all our results are expressed in terms of the
matrices ¢,; and d,; we summarize in the Appendix some
of their properties and giveras well a recursion rela-
tion for the matrix d,;.

4. RESOLUTION OF THE KRONECKER (OUTER)
PRODUCT

For arbitrary [A]} and [A]7 we have

pim) p(m)
(M x[Alr= (kZ, c;'kA([A]:))X(Ej) cmA(NM). (12)
The A, + A, factors in the product
[1%0] 3+ + o [1Rae] x[1F] x * = » x[ 10yt ] (13)
result from the decomposition of the pattern [A]g‘"‘,
where
Amm_\n AT s=1,2,.. ., max(Xr,, AT). (14)
Therefore,
(Arx[ale :k;) chemA(N]mm)
=20 chepdzTbl
:qERg,j[A]g*m, (15)
where
Ry = 2 chendyT (16)

k=1,
i=1,j

gives the number of times the pattern [A]g*m is contained

in [A]gx[/\];".

This result can be easily generalized to the case
where there are more than two factors in the product,
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1 -1 -1 1
o 1-1-11

58
1]

1
FIG. 1, Matrices dj; and

3 for n=5,

2 -1 -2 1
-2 3 3-4 1

[l [T
(1

[)\’]21¢112+. cetng

“if
where

q., ;
1112"'1f

2

Bikgeceky

vee oty httmpteectny

n 2
c c ifr Qo

i1R1 inky

(18)

It should be noted that the use of Eq. (18) for Rgﬂz"'if
involves considerably less computation than the
repeated use of Eq. (16) if the number of factors in
Eq. (17) is greater than two.

5. BRANCHING RULES

The use of canonical subgroup chains greatly
simplifies the calculation of branching rules. For
example, the branching rules for the chain

UWN)DUW=1)D+-« DU(1) (19)

are given by the “betweenness” conditions® of Weyl’s
branching theorem. However the physically relevant
subgroup chains are determined by the symmetries of
the physical problem and seldom coincide with a
canonical chain. Therefore, we consider below the
branching rule problem for an arbitrary subgroup chain.

Let G and H be two arbitrary subgroups of the full
linear group such that G = H. To obtain the branching
rules for GD H we shall assume that the IR’s of
H contained in the totally antisymmetric IR of G are
known; that is, we assume that the coefficient ¢, are
known in

[15]:"2 (Al (20)
where [1¢] is a totally antisymmetric IR of G and [A];
are IR of H,

Then
»(nm)

[A]?=J§c;’,.A([x]">

]

::@cgj[fhj] x[1%2j]x "+ X[].;llj]
— ~ ~ oo (Yn ’
‘?C?j hlhz'z')'hkl g a‘h:"‘h[)\]"l
PR ’
e, (21)
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Introducing Eq. (17) into Eq. (21) we get

(A =2silu];, (22)
where
Se= JE er A n . cvhlj;.,thglhz,,_hM (23)
hyhge ety

gives the number of times the IR k]! of H is contained
in the IR [A]7 of G.

In general, Eq. (22) can be simplifed further by using
modification rules appropriate to the subgroup H.
6. SPECIAL CASES
A. Two column patterns

_ Assume that [A]7 is such athat A, =0 for s > 2 while
A7, #0+ A3,. It is clear that in this case

d};=0 for j>i and dj, =1 for j<i, (24)

which in turn means that

(=) a =0, -5, (25)
Introducmg this into Eq. (5) we get
(A= [ <[] - [ (1), (26)

This formula is useful in atomic spectroscopy where
the electron being a fermion of spin 3 requires that the
spatial symmetry of a many-electron wavefunction be
described by a two-columned pattern.

B. Two-rowed patterns

Assume that [A]7 is such that A%, =0 for s > 2 while

Al #0% A3, It is clear that for this case Egs. (24) and
(25) hold. Introducing Eq. (25) into Eq. (10) we get
[Al7 = [y ] D = Ay, + 1] x [y, - 11 @

This formula is useful when dealing with SU(3) since all
the patterns in this case are at most two rowed. In
Elliot’s language®

)=+ 5, 0x {1, 0 = (A + p+1,0)x(-1,0), (28)

The product of two SU(3) representations is easily
expressed in terms of the appropriate d matrices,

n omgmtm
zvl L C dﬂ-a

Z l,]

) dn*m

- 1*11 [

n+m n+m
phive T YT, 4

- dn*m

n+m
-d plig+l)g”

plisl,fle

APPENDIX

We summarize below the main properties of the
matrices cj; and dj;:

(1 ey ==y ar], (A1)
(2) dl, =c}; =0 for j>1i, (A2)
(3) di;=c},=1 fori=1,...,p(n), (A3)

722 J. Math. Phys., Vol. 18, No. 3, March 1978

(4) d7,20 for 4,j=1,..., p(n), (A4)
(5) Tr(D)=Tr(C)=p(n), (Ab)
(6) Det(D)=Det(C)=1, (A6)
pin)
Ec,,_o for i=1,2,..., [pn)-1], (A7)

(8) both the matrix elements c}, and dj, are integers.

The matrix df, may be obtained directly from its
definition in Eqs. (4) and (9); however, in practice
it is more convenient to build the necessary matrix
elements from the recursion relation we give below.
This is particularly important for the matrix d?; since
normally only a few matrix elements are needed,

Let [A]7 and [A]7 be partitions of the integers n and m
respectively, with say n> m, If

A, =-N)=20, s=1,...,n. (A8)
then the set of positive integers (A%, - )\"‘) form a parti-
tion of the integer n — m which we denote by [)L ~ A ]"""
For n-m=3, e.g., the numbers A, - A7, =210000

or 020010 both define the same partition [21]3.,. We

define

Uoaf A==y -,
H(AL, (M, (A = (A9)
0 otherwise,

then the following recursion relation holds,

'Z; H [A]k’ [ ]n-‘ilj; [1.)‘-1]])d:;31j, (AlO)

where x is the index of the partition of » ~ },; obtained
by removing the first column of partition number j.

If x labels a one- or two-columned pattern, the
recursive process has come to an end since then clearly
drh =1,

For most applications in nuclear physics where the
space symmetry is restricted to patterns of four
columns or less the calculation of 4}, using (A10) will
require at most two steps.
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Solutions to Einstein’s equation for a conformally flat metric e ¥(dx 24 dx 224 dx 3 — dx 4°) are sought for
a self-gravitating irrotational barotropic fluid. It is found that velocity potential ¢ can be expressed in one
of the two forms x *4+x 2 +x3— x4 or x* and {, p, and p are functions of ¢.

1. INTRODUCTION

Exact solutions to Einstein’s equations in general
relativity for self-gravitating irrotational fluids have
been obtained by several authors; Taub and Tabensky'
for a plane-symmetric metric, Letelier and Tabensky2
for the Einstein—Rosen metric and Letelier® and the
present author! for Marder’s metric. However in all
these cases, the equation of state used has been a
somewhat artificial one, namely, p=pc? and the exten-
sion to other physically interesting equations of state
have not yet been possible.

In the present note, we seek exact solutions to
Einstein’s equations for an irrotational fiuid with a
conformally flat metric; partly because in this case
considerable progress can be made under a very gen-
eral assumption that the fluid is barotropic (i.e.,
pressure is a function of density only), but also be-
cause conformally flat metrics have cosmological
interest.?

2. FIELD EQUATIONS
We write the conformally flat metric as
2 2 2
ds® =e* (dx +dx® +d - ),

i.e.,

Gu,=¢€* 1 =e'n,, (say). (1)

-1

For fluid with pressure p, density p, and velocity
v,, the field equations are

Ruv—éguVR:_(p+p)vu-vv_pguv' (2)

For an irrotational fluid there exists 0 and ¢ such that

1)u:0¢,u.

Also, as always, (3)
v, =-1.

For Eq. (3), Eq. {2) can be reduced to
R,,=~@+p)0*¢ uo,~ 30~ p)gu,. (4)

For the metric (1), R,, is given by
R, zlp,u,u - %w,uw,v + %’nuvxy
where B ()]
X=U,1,1F 2,2 3,3- 84,0+ 9%+ + ity - 4’34 .
From (1), (4), and (5)

-2e°"He?) == (o +p)0*P 0, for p*v.  (6)
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From (6) we note that the derivatives of (g™/ %),4 with
respect to x*, x* , and x° are proportional to the deriva-
tives of ¢ with respect to x!, x*, and #°. Thus if &* is
treated as a constant, (e™/ 2)'4 and ¢ are functionally
dependent® and since ¢ is not a constant, (e™/?) ,isa
function of ¢ if x* is treated as a constant; in other
words,

(e/?) ;=08(x*, ) where 0 is some function.
Similarly

(e™'h), 1 =alx, ),

(@), =B, ¢), @
(/) 3 =7(x* ¢),
where «, 8,7 are some functions.
From (6) and (7)
ay=Hp+p)ote 2 ,,
By =30 +p)ote Ry ,,
Yo =3(p+p)o*e ¢ 5, ®
8, =3(p+p)ote'?p,,,
where
a, = 2o , ete.
3¢ 14! as constant
From (1), (4), and (5)
- zew/Z(e-w/?)’i'i +3x== (o +p) Uz(p?i -zlp-p)e,
- 29w/2(€'w2),4,4 ~sx=- (p+p)o ¢>34 +3p-ple. @
Using (7), (8), and (9)
emv/?
ad=Ba=y3==0u="7—[lp-p)e’+x], (10)
where
d A= oa and so on.

Py
ox ¢ as constant

However, @, is a function of ¢ and x'; B2 is a func-
tion of ¢ and x*, etc. Thus (10) is possible only if
a1, B2, 7,3, and — 84 are all equal to a function of ¢
alone. Thus

a=xlv+p, B=x‘v+gq, y=x'v+7, b=—xlv+s,

(11)

where v, p, g, 7, and s are functions of ¢ and v
=/ (p-p) e +x].
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From (8) and (11)

¢rL — ¢12 (12)

x1U0+P¢ —‘;Tv¢+q¢ ’

From (12) we see that along a x° = constant, x* = con-
stant surface, ¢ =constant curves are (xlv, +p,) dx!
+ (*v, +q,)dx* =0 curves, i.e.,

v 2 2

3 (" + %) + pox' +g,4* = constant curves.
Thus along x* = constant, x*=constant surface;

Yo (41 1 42 4 p,at + ¢, x* = function of

5 ¥ x pox” +q,x° =function of ¢.
Similarly along x* =constant, x*=constant surface,

v 2 2 .
2 (" + 5% ) + g, %* + 7, x° =function of
2 ® ]

and so on.

Comparing and combining

v 2 2 2 2
S —at) Hpyxt +gex® +rex Fsgxt +1, =0,

(13)
where ¢, is some function of ¢.
From (7), (11), and (13)
ei= -12}- (22 % )+ pad £ g o st o
(14)

where ¢ = [t,d¢. Also from (8), (11), and (13)

)

+ 2 2 2 2
_ (e 21?) ol /2 = UZM (et? + 2 4 g3t

F(PooX! T Ao ¥ 740 +Sy0xt +1,,).

(15)
From (13), (14), and (15)
e =Pxl+Qx' +Rx® +Sx* + T=L, (say)
(16)
- ip_%-_p_) o’e?/?=Ax!l + Bx* +Cx* + D' + E= L (say),
where P,@,R,S,T,A,B,C,D, E are functions of ¢,
given by
P=p"_£ﬂ3 Q:q_—hs R=r %:
Vs ® ®
S_S_Eﬂz, T=¢ ﬂqz’ A pw_ﬂmfl@,
Vg Ve Vg
Voo (17)
B:qw__m‘l& , C=7pq- _%)L.Q ,
] ]
D____.SM) - Em.s_w.’ Eztwm - Eﬂm_tn?_ .
Vo Vo
From (8),
(o +plote-t(¢? + 2, + 0% —¢h) =4(al + 6 +v4 - 8.
(18)

Using (11) and (13), it is easy to see that the right-
hand side of (18) is a function of ¢ alone. Also from (1)
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and (3)

o*e (¢l + ¢F, + ¢l — dh)=—-1.
Thus, from (18) we get

(o-+plo=n(sp), (19)
where 7 is some function.

From (16) and (19)

__ 2L e )
_-nLo, (D+17)—— 57 ° (20)
Also from (2), (3), and Bianchi identities
{o+p)oto, 1" dp
— v = —-— —logo 21
ptp " p+p 8 " 1)
We have used ¢ ,;, 0" =3( ,0°") ., [dp/(p+p) is
meaningful since p and p are functionally related.
From (21)
dp _
51p ~logo=£(0), (22)

where £ is some function.

From (20), (22), and p=p(p) we get that —n?/2LL}
and — (2LLy/n) e* are functionally related. Let

2
_ Nty _ /__2£ s)
Y2 Cbx\ 77Loe . (23)

Equations (13) and (23) are two relations between

2!, x, #%, %, and ¢. In fact one can get four relations

among !, x%, x*, x! and by differentiating (23) with
respect to x!, x%, %, x* and replacing in those equa-
tions, ¢,1, ¢,3, ¥,1, ¥,5, etc., by using (8), (7), (9),
and (16). However since x!, x?, x°, x* are independent
of each other there cannof be more than one independent
relation between x!, x%, %%, x%, and ¢. Thus comparing
the relations obtained by differentiating (23) with rela-
tion (13) it is easy to see that (23) can be true only if
identically true and we get

L

I, =£(¢),

i.e.,
¢ = Loo = Yoob /v :qoo"“ooh/% :’/cpm"”ow"’@/%
b—vp?v q—vqo/vo r—vroﬁ¢

_ Ses = Y9650/ Vs _ bpo = Voale/Ve
T os—ws, v, l-vt, /v,

where £ is some function of ¢; (24)

which can be rewritten as

Voo — &V _Doe— 8P _dee—1tq _ Yoo = Ly

Vg Do /S Ve
_ See = s _loo— £s ~) (say).
So to

Thus v, p, ¢, ¥, s are solutions of an ordinary
linear homogeneous second order differential equation
and hence at most two of them are independent. If
only one of them is independent

p=Kig, q=Kyg, v=K;g, s=Kig, (25)

where g is a function of ¢ satisfying the same linear

v=Kg,
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homogeneous differential equation and K, Ky, K, Kj,
and K; are constants.

By (11), (16), (17), (24), and (25), Eqs. (7) and (8)
reduce to

- %L()w,u. :gG,u’ L0§(¢) ¢,u =g¢G
where
G’;—{(x + 52+ 8 = 1)
+ (Kt + Kpx® + Kax® + Kya). (26)
Thus
v=9(G), $=0(G). @mn
Now if possible let two of v, p, g, », and s be inde-
pendent, so let
U:Kg+K’h, p :K1g+K{h’ q :K2g+Kéh;
(28)

r=Kyg+Kih, s=K,g+Kih,

where g and % are two independent solutions of the same
differential equation and K, K', Ky, K{, K,, K}, Kj;,

K}, K,, and K} are constants, From (11), (16), (17),
(24), and (28), Eqgs. (7) and (8) reduce to

- %Lod’,u =gG,u +hH,u s

(29)
Lyg(¢) ®,.=86C,u ThoH
where G is given by (26) and
(4
= % Gt a2t 448 - )
+ (Kix! + Kjx* + Kix® + K{x").
From (29)
~L, {9+ E(w) - (g— LAN
ho Wb hy )
Thus
Lh —hge/h
W+ f 5o de =), - g—foﬂ@ =£c(G). (30)
L]

From (16), (17),

( —%) exp [—f(éh/ho)d¢]=fG(G)exp[—f(((s;)l]),

However, the left-hand side of (30) is a function of ¢
and the right-hand side of (31) is a function of G. There-
fore, from (26) and (31), we get (27). Thus (27) is true
either way. [The fact that (27) is true also means that
only one of v, p, ¢, 7, s is independent. ]

and (30)

From (3) we note that the velocity potential ¢ is un-
determined to the extent that any arbitrary function of
¢ can also serve as velocity potential provided o is
adjusted accordingly. Thus without loss of generality
we set

2,2 a2
b =K' +x¥ +x5 - 2¥) + Kyt

+ K2x2 + K3x3 + K4x4 (32)
and
=9(e), (33)
725 J. Math. Phys,, Vol. 19, No. 3, March 1978

where as before K, K;, K;, K3, and K, are constants.
Case 1: K#0
Here, without loss of generality, we can set

¢ =x¥ . (34)
and using (1), (3), and (33), we get

4¢0% exp(-P) =-1.
Therefore, we must have

oL Y )

and the field equations reduce to

14
(i)(w@@_ :%(P+p),

o (35)
vy (p-p).

¢(w¢¢ + ;d)?p) +3d)o =

The condition that p> 0 gives is
GU% + 29, < 0. an)

The condition that p > 0, i.e., there is pressure, rather
than tension, gives

2084, + 30y >0, (III)

Case 2: K=0
Using (1), (3), and (33),
ot exp(— PIKI + K2+ K3 —Ki) ==~ 1.
Thus
KA+ K+ K - Ki<O.
Therefore, without loss of generality, we can set
K{=0, K,=0, K;=0, K;=1,
i.e.,
¢ =x'
and the field equations reduce to
Yoo ~ 305 =~ €*(p+p),
Yoo +¥5 =—e*(p-p).

p >0 is automatically satisfied and p > 0 gives

(36)
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boo t+ %Zl)%, <0. (Iv)

3. CONCLUSION

Thus any solution of (2) and (3) for metric (1) is of
the form (33), where ¢ is given by (34) or (36).

In Case 1, when ¢ is given by (34), the field equations
reduce to (35) and the inequalities {I), (1), and (III) are
to be satisfied for a fluid with p >0, p >0, Also, in this
case p and p are functions of x! +x2 +x o -,

This leads to an interesting model of the universe or
a star, where at any value of x*, the entire system is
confined in a “sphere” x!° +x?* +x3 =y, For x4 <0,
this “sphere” keeps on shrinking, until at *=0, the
system collapses to a point x! =0=x%=x% For x*> 0,
the system keeps on expanding. The metric here ad-
mits six Killing vectors (0,x%, — x%,0), (%, -x!,0,0),
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(&, 0,~4,0), (+*,0,0,-x"), (0,x%0,x), and

(0, O,xz,x") corresponding to six rotations. The metric

is however not invariant under any of the four

translations.

In Case 2, when ¢ is given by (36), the metric is of

the well-known Robertson—Walker form and hence

need not be discussed in detail. Here also, the metric

admits six Killing vectors, which are (0, %, x%,0),

O ~+1,0,0), (°,0,~41,0), (1,0,0,0), (0,1,0,0), and

(0,0,1,0), and correspond to three translations and
three rotations in the (x!, x%, x*) space.

It may also be pointed out that both the metrics dis-

cussed here belong to a category of metrics that
Petrov’ has called Kagan subprojective space.
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